Total No. of Pages: 4

BT6/M11

8614

Control System Engineering

Paper: ECE-302E, Option: I

Time: Three Hours]

[Maximum Marks: 100

Note: — Answer any FIVE questions, selecting at least ONE question from each section.

SECTION-I

- (a) Explain in brief working of a stepper motor and derive a suitable mathematical model for it.
 - (b) Define parameter sensitivity and explain effect of feedback on it.
 - (c) For the mechanical system shown in Fig. 1, write equations of motion. Determine X₁(s)/F(s) and X₂(s)/F(s) and draw electrical analog circuit.

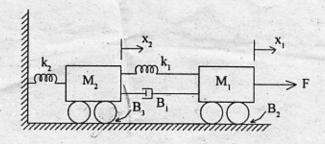
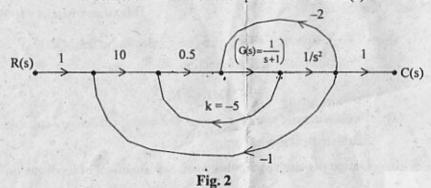



Fig. 1

(a) Explain the following terms with reference to signal flow graph:
(i) Node, (ii) Path, (iii) Loop, (iv) Transmitter.

- (b) Fig. 2 is a signal flow graph of a closed loop control system :
 - (i) Determine C(s)/R(s).
 - (ii) If the branch K were made zero, the same transfer function could be still obtained by appropriately modifying G(s) branch. Determine the required modified G(s).

SECTION—II

- 3. (a) Distinguish between 'order' and 'type' of the system.
 - (b) The loop transfer function of a closed loop system is given by:

$$G(s) H(s) = \frac{20}{s(1+2s)}$$

Determine static error coefficients and steady state error when input is r(t) = 1 + 3t.

(c) The forward path transfer function of a unity feedback control system is:

$$G(s) = \left(100 + \frac{k}{s}\right) \left(\frac{1}{2s(2s+1)}\right).$$

Determine the range of values k over which the system will remain stable.

4. (a) Explain time domain specifications of a second order system. Determine these quantities for a second order system characterized by transfer function:

$$\frac{C(s)}{R(s)} = \frac{40,000}{s^2 + 48.5s + 40,000}.$$

(b) Sketch root locus of the system having $G(s) = \frac{k}{s(s+1)}$ and

$$H(s) = \frac{s+3}{s+2} \text{ for } k \ge 0.$$

SECTION-III

 The open loop transfer function of a unity feedback control system is:

$$G(s) = \frac{k}{s(1+0.2s)(1+0.02s)}.$$

Sketch Bode plot for k = 1 and determine the gain margin, gain cross over frequency, phase margin and phase cross over frequency. Comment on effect of increasing k on the stability of the system.

20

- (a) Explain correlation between time domain and frequency domain responses.
 - (b) The open loop transfer function of a unity feedback system is given by G(s) = k/(s(s+a)). Discuss stability of the system for k = 10 and a = 2 using Nyquist plot. Comment on stability as k and a are varied.

SECTION-IV

- 7. (a) Explain the concept of 'state' and 'state variables'.
 - (b) Given the state equation:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

determine the state transition matrix.

8

(c) The transfer function of a control system is given by:

$$\frac{Y(s)}{U(s)} = \frac{4s+3}{s^2+5s+10}$$

Find a state model for the system using decomposition technique.

8

