AMIETE – ET (NEW SCHEME) – Code: AE67

Subject: DIGITAL COMMUNICATIONS

Time: 3 Hours

Max. Marks: 100

DECEMBER 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The minimum sampling rate for the signal, $x(t) = 10\cos(100\pi t) \cdot \cos(250\pi t)$ is

(A) 350 samples/sec	(B) 250 samples/sec
(C) 100 samples/sec	(D) 500 samples/sec

b. In a binary system the symbol-'0' occurs with a probability p_0 and the symbol-'1' occurs with a probability p_1 . The maximum value for entropy occurs when

(A) $p_0 > p_1$	(B) $p_0 < p_1$
(C) $p_0 = p_1$	(D) $p_0 = zero$

c. A Gaussian channel has 2 MHz bandwidth and SNR of 30 dB. The channel capacity is

(A) 49.9 Mbits/sec	(B) 3 Mbits/sec
(C) 19.9 Mbits/sec	(D) 9.9 Mbits/sec

d. A PCM system uses a uniform quantizer of midtread type followed by a 8 bit binary encoder. The signal to quantization noise ratio is

(A) 46.2 dB	(B) 40.8 dB
(C) 42.8 dB	(D) 30.2 dB

e. The minimum transmission bandwidth of the T1 system is

(A) 1544 kHz	(B) 772 kHz
(C) 2048 kHz	(D) 1234 kHz

f. The average probability of symbol error for coherent binary PSK equals

(A) $P_e = \frac{1}{2} \operatorname{erfc}\left(\frac{E_b}{N_o}\right)$	(B) $P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{2E_b}{N_o}}\right)$
(C) $P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_b}{2N_o}}\right)$	(D) $P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_o}}\right)$

1

g. For the input signal s(t), which is zero outside the interval of 0 < t < T, the impulse response of a matched filter is

$(\mathbf{A}) \ \mathbf{h}(\mathbf{t}) = \mathbf{s}(\mathbf{T} - \mathbf{t})$	$(\mathbf{B}) h(t) = s(T+t)$
$(\mathbf{C}) \ \mathbf{h}(\mathbf{t}) = \mathbf{s}(\mathbf{t} - \mathbf{T})$	$(\mathbf{D}) \ \mathbf{h}(\mathbf{t}) = \mathbf{T} \cdot \mathbf{s}(\mathbf{t})$

h. In a QPSK system, if E_b is the signal energy per bit, then transmitted signal energy per symbol, E is given by,

$(\mathbf{A}) \mathbf{E} = \mathbf{E}_{\mathbf{b}}$	(B) $E = 2E_b$
(C) $E = 4E_b$	(D) $E = 8E_{b}$

i. A spread spectrum communication system has the processing gain of 2000 and information bit duration of 4 msec. The PN chip duration is

(A) 4μ sec	(B) 2μ sec
(C) 8 secs	(D) 0.5µ sec

j. In a digital radio, for each voice channel the PCM is used with a bit rate of

(A) 8 K b/sec	(B) 32 K b/sec
(C) 16 K b/sec	(D) 64 K b/sec

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Explain the Huffman encoding algorithm. Using this algorithm compute the Huffman code for a discrete memoryless source. The source has an alphabet of five symbols with their probabilities given below:

Symbol	s ₁	s ₂	s ₃	s ₄	\$ ₅	
Probability	0.55	0.15	0.15	0.1	0.05	
Find the codi	ng efficien	cy.		·		(10)

- b. Define channel capacity. Derive an expression for the channel capacity of a binary symmetric channel. (6)
- Q.3 a. Explain the Quadrature sampling of band pass signals with the help of block diagram.
 (8)
 - b. The signal $g(t) = 4\cos 300\pi t + 6\cos 750\pi t$ is sampled at a rate of 500 samples/second. Draw the spectrum of the sampled signal. If the sampled signal is passed through an ideal low pass filter having a cutoff frequency 400 Hz, what frequency components will appear at the filter output? (8)
- Q.4 a. With the help of block diagram, explain PCM system and also discuss the functions of each block. (8)

- b. Derive an expression of the SNR of a delta modulator having no slope over load distortion for an input $x(t) = A\cos(2\pi f_0 t)$. Assume that the receiver has a post reconstruction low pass filter of bandwidth 'W' such that $(W \ge f_0)$. (8)
- Q.5 a. For the binary sequence 01100110 draw unipolar NRZ, AMI, bipolar NRZ and Manchester line codes. (4)
 - b. Define ISI. Derive the Nyquist criterion for distortionless baseband binary transmission in the absence of noise. (6)
 - c. The binary data 01101001 is applied to the input of a precoded duobinary system. Construct the duobinary coder output, and corresponding receiver output.
 (6)
- Q.6 a. Derive an expression for the probability of symbol error for coherent binary FSK system.
 (8)
 - b. The binary sequence 11001000110 is applied to a DPSK transmitter. Sketch the resulting waveform at the transmitter and receiver end. (8)
- Q.7 a. Using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis functions to represent the four signals $s_1(t), s_2(t), s_3(t)$ and $s_4(t)$ shown in the Fig.1. Express each of these signals in terms of the set of basis functions. (8)

b. Ob

its properties.

(8)

- Q.8 a. Define spread Spectrum Modulation Technique. Discuss, how it differs from other digital modulation techniques. Also explain the term Processing Gain and Jamming Margin.
 (8)
 - b. What is frequency hop spread spectrum? Describe frequency hop spread MFSK system employing slow-frequency hopping technique. (8)
- Q.9 Write short notes on:-
 - (i) The application of waveform coding Techniques.
 - (ii) CDMA.

(8+8)