Total No. of Questions: 12]

[Total No. of Printed Pages: 4

[3761]-14

F. E. Examination - 2010

BASIC ELECTRICAL ENGINEERING

(2003 Course)

Time: 3 Hours]

[Max Marks : 100

Instructions:

- (1) Answer three questions from section I and three questions from section II.
- (2) Answers to the **two sections** should be written in **separate books**.
- (3) Black figures to the right indicate full marks.
- (4) Neat diagrams must be drawn wherever necessary.
- (5) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket scientific calculator and steam tables is allowed.
- (6) Assume suitable date, if necessary.

SECTION - I

- Q.1) (A) Define Insulation Resistance and derive its expression for a Cable. [06]
 - (B) Write a show note on Nickel-Cadmium Cell. [05]
 - (C) A piece of silver has a resistance of 1Ω . What will be the resistance of manganin wire of one-third of the length and one-third the diameter if the resistivity of manganin is 30 times that of silver? [06]

OR

- Q.2) (A) An electric water heater raises the temperature of 20 liters of water from 16°C to 100°C. If the efficiency of the heater is 85%, calculate the energy consumed by the heater in (i) Joules
 - (ii) in kwh. The sp. heat capacity of water is 4190 J/kgK. [06]

	(B)	Define and explain Work, Power and Energy.	[06]
	(C)	Discuss the effect of temperature on the resistance of various	
		materials.	[05]
Q.3)	(A)	State and explain Kirchoff's Laws.	[06]
	(B)	Derive the formulae to convert a delta connected network into	
		its equivalent star connected network.	[06]
	(C)	State and explain Maximum Power Transfer Scorem.	[05]
		OR C	
Q.4)	(A)	State Superposition Theorem and use it to calculate the current in branch X-Y of the circuit shown in fig. 1.	[12]
		$ \begin{array}{c c} X \\ 2\Omega \\ \end{array} $ $ \begin{array}{c c} X \\ 3V \\ \end{array} $ $ \begin{array}{c c} \end{array} $	
		$4.8V \longrightarrow 4\Omega $ Fig. 1	
	(B)	State and explain Thevenin's Theorem.	[05]
Q.5)	(A)	Define and explain the following as related with Magnetic Circuit:	[06]
		(1) Magnetic Flux Density	
		(2) Permeability	
	(B)	Write a short note on Magnetic Leakage and Fringing.	[06]
	(C)	Explain Hysteresis Loss.	[04]
		OR	
Q.6)	(A)	A magnetic core, in the form of a closed ring has mean length 20 cm and cross section of 1 cm ² . The relative permeability	
	9	of iron is 2400. Calculate the current which will be required in a coil of 2,000 turns uniformly wound on the ring to create	
	-	a flux of 0.2 mwb in the iron.	[06]
	(B)	State and explain Faraday's Laws of Electromagnetic Induction.	
	(C)	Define Self and Mutually Induced e.m.f.	[04]
[3761		•	ontd.

SECTION - II

Q. 7)	(A)	Derive expression of Energy stored in Capacitor in terms of Capacitance and Voltage.	[06]
	(B)	Derive the expression for Average Value of the Sincsoidally Varying Current in terms of its Peak Value.	[06]
	(C)	An alternating current is given by $i = 14.14 \sin 377 t$.	
		Find its –	
		(1) R.M.S. Value	
		(2) Frequency and sketch its Wave rm.	[05]
		OR •	
Q.8)	(A)	Derive the expression for the RMS Value of the Sinusoidally Varying Current in terms of its Deak Value.	[06]
	(B)	Define and explain:	
		(1) Form Factor and	
		(2) Peak Factor	[06]
	(C)	Two capacitors of JuF and 2µF are connected in series	
		across a 400V d.c. supply.	
		Calculate	
		(1) Resultant Capacitance	
		(2) p.d. across each capacitor	[05]
Q.9)	(A)	A Coil of Resistance 15Ω and inductance 0.05H is connecting series with $100\mu F$ capacitor a cross a 230V, 50Hz supplyind:	
	D	(1) Current Drawn	
	7	(2) Phase Angle	
		(3) Voltage Drop Across Coil and Capacitor	[08]

		parallel across a.c. supply. If the total current drawn is 25 Amp	
		then calculate current and power taken by each	raai
		impedance.	[08]
0.10)	()	OR C	
Q.10)	(A)	Explain following terms:	
		(1) Active Power	
		(2) Reactive Power(3) Admittance Triangle and	
			[08]
	(D)		[vo]
	(B)	A 200V, 50 Hz single phase supply is connected to a load consisting of 50Ω resistance, 75 mH inductance of 500μ F	
		capacitance all in series. Calculate the current drawn. What	
		will be new value of current if supply frequency is reduced	
		<u> </u>	[80]
Q.11)	(A)	Explain with neat connection liagram how direct load test is	
		performed on single phase transformer to determine its regulation	
		and efficiency.	[80]
	(B)	Define:	
		(1) Phase Sequence	
		(2) Balance Load	
		(3) Symmetrical Supply	[06]
	(C)	State the equations for 3 phase active power, reactive power	
		and apparent power.	[03]
Q.12)	(A)	A 350 V250 50Hz Single Phase Transformer has cross sectional	
		area of core of 125cm ² and 70 turns on low voltage side.	
		Calculate:	
	1	(1) The value of maximum flux density.	
	7	(2) The no. of turns on high voltage side.	[05]
	(B)	Derive the expression of Active Power in a Delta connected	
		balanced load in a three phase circuit. Draw connection diagram	[13]
		and relevant phasor diagram.	[12]
		[3761]-14/4	

Two impedances (8 + j6) $\!\Omega$ and (3 - j4) $\!\Omega$ are connected in

(B)