S.E. (Mech.) (II Sem.) EXAMINATION, 2010

THEORY OF MACHINE-I
(2008 COURSE)
Time : Four Hours
Maximum Mars 100
N.B. :- (i) Solve graphical problems and its calculations an drawing sheets.
(ii) Answer three questions from Section I nd three questions from Section II.
(iii) Answers to the two Sections sho written in separate answer-books.
(iv) Neat diagrams must be drawn wherever necessary.
(v) Figures to the right adr ate full marks.
(vi) Use of logarithmic taves, shde rule, Mollier charts, electronic pocket calculator an steam tables is allowed.
(vii) Assume suitable data, if necessary.

SECTION I

1. (a) Explain difference between the following :
(i) Manism and Machine

Analysis and Synthesis of Mechanism
(tii) Ackermann and Davis Steering Gear Mechanism.
(b) What do you understand by inversion of a kinematic chain? Describe any two inversions of slider crank chain with neat diagrams.
(c) Explain the equivalent linkage of mechanism with suit ale example.

Or
2. (a) What is the condition for correct steering ? Prove that the condition of correct steering is always atty in Davis steering gear mechanism.
(b) Calculate the degree of freedom of following mechanism, shown in Fig. 1.
(c) Explain pantograph" with the help of neat sketch.
3. (a) Stat and explain "Kennedy's Theorem" of three centres fin.
(b) Fig. 2 shows the mechanism of sewing machine needle box. For the given configuration, find the velocity of needle fixed to the slider ' D ', when the crank $O A$ rotates at 40 radse Use Instantaneous Centre of Rotation method.

Fig. 2
Or
4. For a stone sher mechanism as shown in Fig. 3, determine the angst velocity of link 5 and 6. Also determine the velocity and eleration of point " P " in link 6. Assume crank 2 is
rotating at constant speed of 100 rpm anticlockwise. Use relative velocity and relative acceleration method.

5. (a) In a slider crank mechanism, we rank is 50 mm long and connecting rod 200 mm lens When the crank has moved through 30° from the inter dead center position, the velocity of slider is $2 \mathrm{~J} / \mathrm{s}$. Find using Klien's construction, angular accelerant of connecting rod and acceleration of center of gr a of connecting rod, which is situated at a distance of 80 mm from big end.
(b) Fig. Wows a Scotch-Yoke mechanism. At the instant, in Fig., the crank $O P$ has an angular velocity of $\mathrm{rad} / \mathrm{sec}$. and angular acceleration of $30 \mathrm{rad} / \mathrm{sec}^{2}$. Determine the acceleration of slider ' P ' in the guide and
the horizontal acceleration of the guide. Use relative velocity and relative acceleration method.

Fig. 4
Or mm
6. As shown in Fig. 5, crank OA, 100 mm long rotates clockwise at 100 rpm , Rod $\mathrm{AC}, 500 \mathrm{~mm}$ lon s ides in a swiveling pin at ' B '. The end 'C' slides on a swinging link DE. (Movable swivel joint at C) When the angle $\$ Q A$ is 120°, find the angular velocity and angular acceleration ' DE '. Use relative velocity and relative acceleration method.

Fig. 5

SECTION II

7. (a) In a slider crank mechanism, the crank is 200 mm long and connecting rod 800 mm long. Find the velocity acceleration of piston and angular velocity and acceleration of connecting rod, when the crank has fried through 60° from inner dead center. The angus velocity of the crank is $20 \mathrm{rad} / \mathrm{sec}$ and is increang at the rate of $10 \mathrm{rad} / \mathrm{sec}^{2}$. Use approximate Arlytical method.
(b) Draw a polar velocity diagram of Hogke's Joint and mark all silent features of the diagram the driving shaft speed of 400 rpm having shaft ans of 18°. What is the average speed of driven shaft
8. (a) The four bar mechanism ABCD is driven by link " $A B^{\prime}$ " at $10.5 \mathrm{rad} / \mathrm{sec}$ in counterclockwise direction Find the angular velocities links "BC" and "CD". Tank $3=50 \mathrm{~mm}, \mathrm{CD}=56 \mathrm{~mm}, \mathrm{AD}=100 \mathrm{~mm}$. Link
is fixed. Angle $\mathrm{BAD}=60^{\circ}$ and angle $\mathrm{CDA}=80^{\circ}$. Use
(b) The two shafts of a Hooke's coupling have their axes inclined at 20°. The shaft A revolves at a uniform speed of 100 rpm . The shaft B carries a flywheel of mass 30 kg . If the radius of gyration of flywheel is 100 find the maximum torque in shaft ' B '.
9. (a) Explain the following terms related to synt s of mechanism :
(i) Function Generation
(ii) Dimensional Synthesis
(iii) Precision Points
(iv) Structural Error.
(b) Design a four bar mecharism with input link I_{2}, coupler link I_{3} and output link I ngles θ and Φ for 3 successive positions are given below

If the nded link $I_{1}=30 \mathrm{~mm}$, using Frudenstein's equatin, find out lengths of other links to satisfy the given conditions. Also draw the synthesized mechanism its first position and comment on the mechanism ortained.
10. (a) Derive the Frudenstein's equation of four bar mechanism. [10]
(b) Synthesize a four bar mechanism to guide a rod $A B$ " through 3 consecutive positions $A_{1} B_{1}, A_{2} B_{2}$ and B_{3} as shown in Fig. 6.
[6]

11. (a) With the holp of neat diagram, derive the frequency equation for bifilar Suspension".
(b) The fol owing data relate to the connecting rod of a reciproting engine :
$4 \pi s^{s}=50 \mathrm{~kg}$
Distance between bearing centres $=900 \mathrm{~mm}$

Diameter of big end bearing $=100 \mathrm{~mm}$
Diameter of small end bearing $=80 \mathrm{~mm}$
Time of oscillations, when the connecting rod is suspended from big end $=1.5 \mathrm{sec}$.
from small end $=1.85 \mathrm{sec}$.

Determine :
(i) The moment of inertia of rod about the xis through centre of mass perpendicular to the lap of oscillations.
(ii) The dynamically equivalent system the connecting rod comprising two masses, at he small end bearing centre.

12. (a) Draw and explain in brie Turning Moment Diagram of a 4 stroke single cymar engine. State the utility of this diagram.
(b) The following aaa relate to a horizontal reciprocating engine

Mass the reciprocating parts $=120 \mathrm{~kg}$
alk length $=90 \mathrm{~mm}$
Engine speed $=600 \mathrm{rpm}$

Connecting rod data :
Mass $=90 \mathrm{~kg}$
Length between centres $=450 \mathrm{~mm}$
Distance of centres of mass from big end centre $=180$
Radius of gyration about an axis through centre oas
$=150 \mathrm{~mm}$
Find the magnitude and direction of the servia on the crankshaft, when the crank has turd through 30° from the inner dead centre.

