4
Critical value of F at 5% level

Degrees of	Degrees of Freedom (Numerator)				
Freedom (Denominator)	2	3	4	5	6
2	19.00	19.16	19.25	19.30	19.33
3	9.55	9.28	9.12	9.01	8.94
4	6.94	6.59	6.39	6.26	6.16
5	5.79	5.41	5.19	5.05	4.95
6	5.14	4.76	4.53	4.39	4.28

Specifications for Class A pipettes

Capacity (ml)	Tolerance transfer	Tolerance measuring
1	±0.006ml	±0.01ml
2	±0.006	±0.01
3	±0.01	±0.01
4	±0.01	±0.01
5	±0.01	±0.02
10	±0.02	±0.03
20	±0.03	±0.03
25	±0.03	±0.05

M.Sc. DEGREE I SEMESTER EXAMINATION IN ENVIRONMENTAL TECHNOLOGY MARCH 2002

CHEMOMETRY AND GOOD LABORATORY PRACTICES

Time: 3 Hours Maximum Marks: 50

SECTION - A

(Answer <u>ANY FIVE</u> questions)
(All questions carry <u>EOUAL</u> marks)

 $(5 \times 2 = 10)$

- I. 1. Round off to the nearest hundredth. Express to 3 significant figures.
 - (a) 33.246
- (b) 243.50
- (c) 10.145
- 2. Give the number of significant figures in the following:
 - (a) 18.23×10^5
- (b)
- (c) 0.040
- 3. Give answers in proper significant figures

Multiply

 $21.5 \times 4.1 \times 10^{-4} \times 2.3 \times 627.0$

0.37

- 4. How is detection limit defined?
- 5. Illustrate with examples the kind of errors in measurements.
- 6. Define equivalent conductance.

SECTION - B

(Answer <u>ANY FIVE</u> questions)
(All questions carry <u>EQUAL</u> marks)

 $(5 \times 3 = 15)$

- II. An aqueous solution contains 15% by weight sodium chloride. Calculate- (a) its molality and (b) mole fraction of solute present.
- III. A 50ml sample of 0.1M HCl solution is titrated with 0.1M NaOH. Calculate the pH of the solution after addition of 10ml of NaOH.

- Calculate the distribution coefficient of iodine between carbon tetra chloride and water if, on equilibration of 0.2500 gram of I_2 in 50 ml water with 25 ml of CCl_4 , 0.2443 gram of I_2 is extracted into CCl_4 .
- What are the systematic errors in pipetting? How to correct for these errors?
- A 25 ml pipette at 25°C delivers a volume of water, which weighs 24.9866g. Does it conform to Class A pipette?
- VII. A certain acid base indicator acts as a weak acid and has a pH = 4.35. Calculate the pH range in which the indicator changes color.

SECTION - C (Answer <u>ANY FIVE</u> questions) (All questions carry <u>EQUAL</u> marks)

 $(5 \times 5 = 25)$

- VIII. What are the various types of hazardous chemicals? Illustrate each with one example.
- IX. Analysis of Zn in a brass sample

IV.

V.

VI.

X.

 Analysis of Zn in a brass sample.			
	%		
1)	11.7		
2)	11.6		
3)	1.9		
4)	11.2		
5)	11.5		
6)	11.2		
7)	11.4		
8)	11.0		
9)	10.8		
10)	10.9		
Calculate the mean and standard d	eviation of the mesurements at 95%		

confidence level.

A hydrogen electrode dipping in pure distilled water is coupled to a

of the calomel electrode is +0.334V.)

0.1M Calomel electrode. What is the e.m.f. of the cell? (The potential

Contd.....3

- XI. Calculate the pH of a 0.01M solution of sodium formate, given the dissociation constant of formic acid as 2.1×10^{-4} .
- XII. A new method is proposed for the spectophotometric determination of iron sample. The method, when applied to a water sample gave a mean value of 2.42ppm for five repeated measurements with a standard deviation of 0.21ppm. The standard method gave a mean value of 2.38ppm for seven measurements with a standard deviation of 0.18ppm. Is the new method better in precision than the standard method?
- XIII. A method for the analysis of a pesticide free cabbage gave the following results: 0.2, -0.5, -0.2, 1.0, 0.8, -0.6, 0.4, 1.2 μ g of the pesticide. Calculate the detection limit for the pesticide at 95% confidence level for a single analysis.

Critical values of student's 't' at various levels of probability

Factor for Confidence Interval

Degrees of Freedom	95%	99%
1	12.7	6.37
2	4.30	9.92
3	3.18	5.84
4	2.78	4.60
5	2.57	4.03
6	2.45	3.71
7	2.36	3.50
8	2.31	3.36
9	2.26	3.25
10	2.23	3.17

Contd.....4.