AMIETE - ET/CS/IT (OLD SCHEME)

Code: AE06/AC04/AT04

Time: 3 Hours

DECEMBER 2010

Subject: SIGNALS & SYSTEMS Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1Choose the correct or best alternative in the following: (2×10)

a. u(n) - u(n-1) will result in

(A)	u(n)	(B)	u(-n-1)
(C)	$\delta(n)$	(D)	$\delta(n-1)$

b. The system characterized by the equation y(t) = a x(t) + b is

(A) linear for any value of b.	(B) linear if $b < 0$
(C) linear if $b > 0$.	(D) non- linear.

- c. Laplace transformation of $e^{-at} t^n$
 - (A) $t/(s+a)^n$ (B) $a/(s+a)^{n+1}$ (C) $n!/(s+a)^{n+1}$ (D) none of above

d. The system described by $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$ is

- (A) unstable(B) stable(C) can't defined.(D) marginally stable.
- e. System function $H(\omega)$ equals

(A) $Y(\omega) * X(\omega)$	(B)	$Y(\omega) \times X(\omega).$
(C) $Y(\omega) / X(\omega)$.	(D)	$X(\omega) / Y(\omega)$

f. Z-transform converts convolution of time signal into

(A)	division	(B) sum
(C)	multiplication	(D) modulo sum

g.	Signal $x(t) = e^{-at}u(t), a > 0$ is a	
	(A) energy signal(C) data is insufficient	(B) power signal(D) none of the above.
h.	Tossing a dice is an example of	
	(A) continuous random variable.(C) cumulative random variable	(B) conditional random variable(D) discrete random variable.
i.	The Fourier transform of u(t) is	
	 (A) 1/ (j2πf) (C) 1+ j2πf 	(B) j2πf(D) none of the above
j.	Convolution of $\delta(n)$ with itself give	S
	(A) $2 \delta(n)$ (C) $\delta(n)$	(B) u(n) (D) r (n)

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. (i) Derive the expression for the DFS, for a given x(n) which is periodic with fundamental period N.
 - (ii) Prove $a_k = a_{k+N}$

	····	· · · · · ·	· · ·	1	1 1	(1	۰.
- 1	111)	$1 \pm v/n$	10 rool on	dough a ora ray	l and avan		 ٠
			ття теагаш	$1 \in V \in \Pi$ A_1 $A_1 \in I \in A_2$	n and even		
	111/	11 ///11	10 Ioui un	$u \circ v \circ u u \circ u \circ v \circ v \circ u \circ v \circ v \circ v $,
	· /	· · · ·		N			

b. Discuss the difference between energy and power signal. (4)

Q.3 a. Compute the convolution y(t) = x(t) * h(t) for $x(t) = e^{2t}u(1-t)$ and $h(t) = e^{-t}u(t+3)$. (8)

- b. If $x(n) = cos(n\pi/2)$ where $0 \le n \le 3$. Plot the following (8) (i) x(n) (ii) x(n-2) (iii) x(-3-n) (iv) $x(n-1) \delta(n+2)$
- **Q.4** a. Two signals $x(t) = \cos 2\pi t$ and $y(t) = \cos 100\pi t$ are sampled with sampling frequency of 40 Hz. Obtain the associated discrete time signals x(n) and y(n)and comment on the result. (10)

b. Define Duality: using the property of Duality find the Fourier transform $G(i\omega)$ of the signal $g(t) = \frac{2}{1+t^2}$. (6)

AE06/AC04/AT04 / DEC. - 2010 2 AMIETE - ET/CS/IT (OLD SCHEME) **Q.5** a. Consider the periodic signal x(t) shown in Fig.1 and given by

$$x(t) = \begin{cases} At^{2} & 0 \le t < T_{0} \\ 0 & T_{0} \le t < 2T_{0} \end{cases}$$

if $a_{0} = \frac{1}{6}$, show that $AT_{0}^{2} = 1$. (8)

b. Consider the first order causal LTI system described by the difference equation y(n) - a y(n-1) = x(n), with |a| < 1. Obtain

(i) frequency response of the system

(ii) impulse response of the system

Q.6 a. For X(s) =
$$\frac{1}{s+1/2}$$
, Re{s} > $-\frac{1}{2}$; draw Pole- Zero plot geometrically. (6)

b. Consider an LTI system with impulse response $h(n) = \alpha^n u(n)$ with $|\alpha| < 1$ and the input to the system is $x(n) = \beta^n u(n)$ with $|\beta| < 1$ computer y(n). (10)

Q.7 a. The input to an LTI system is $x(t) = e^{-3t}u(t)$, then the output is $y(t) = \left| e^{-t} - e^{-2t} \right| u(t)$. Determine (8)

- (i) the system function
- (ii) ROC
- (iii) Differential equation.
- b. Explain the concept of unilateral Z Transform with a suitable example. (4)
- c. For $x(z) = 4z^2 + 2 + 3z^{-1}, 0 < |z| < \infty$, determine x(n) and plot the sequence.
 - (4)

(8)

- **Q.8** a. Find the z- transform and ROC for the signal $x(n) = (1/3)^{n} \sin\left(\frac{n\pi}{4}\right) u(n)$ (8)
 - b. State dirichlet condition of Fourier Transform. Determine and plot the continuous - time Fourier transform of (8)
 - (i) The unit impulse
 - (ii) The rectangular pulse

Q.9 Write short notes on any <u>FOUR</u>:

- (i) Random Variables & Gaussian Random variable
- (ii) Sum of random Processes
- (iii) Stationary and Non- stationary Random Processes
- (iv) Mean and Standard deviation
- (v) Ergodic process