1/7/12 Code: A-20

Code: A-15 Subject: COMMUNICATION ENGINEERING
Time: 3 Hours June 2006 Max.

Marks: 100

NOTE: There are 9 Questions in all.

• Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the fol	lowing:
---	---------

(2x10)

- a. If the resistance value is doubled and temperature maintained constant, the available thermal noise power per unit bandwidth will
 - (A) increase four-fold.
- **(B)** increase two-fold.
- (C) remain unchanged.
- **(D)** decrease to half of its original value.
- b. A product modulator yields
 - (A) a full AM signal.

(B) a DSB-SC signal.

(C) a VSB signal.

- (D) an SSB signal.
- c. An AM signal can be demodulated by using
 - (A) an LPF.

(B) a PLL.

(C) a discriminator.

- **(D)** an average detector.
- d. Flat top sampling leads to
 - (A) aperture effect.

(B) aliasing.

(C) loss of signal.

- (D) loss of higher frequency components.
- e. The modulating signal frequency in commercial FM systems is usually limited to
 - (A) 75 kHz.

(B) 15 kHz.

(C) 5 kHz.

- **(D)** 3.4 kHz.
- f. A sinusoidal, 400 Hz modulating signal of 2 V amplitude phase modulates a carrier and produces 2.5 kHz maximum deviation. The index of phase modulation is
 - (A) 20.

(B) 12.5.

(C) 6.25.

- **(D)** 3.125.
- The impulse response of a filter matched to data pulses $\pm g(t)$ with $0 \le t \le T$ is
 - (A) $\delta^*(t)$

(C) g * (t - T).

- (B) g*(t). (D) g*(T-t).
- h. A CW radar operating at 5 GHz aims at a target moving with a 108 kmph radial speed. The observed Doppler shift will be
 - (A) 180 Hz.

(B) 500 Hz.

(C) 927 Hz.

- **(D)** 1000 Hz.
- A single bit parity check code can
 - (A) only detect a single bit error.
- **(B)** correct a single bit error.
- **(C)** only detect two-bit errors.
- **(D)** correct upto two-bit errors.
- A DM system with a pulse amplitude S and pulse rate f_s will not suffer from slope overload distortion with a sinusoidal modulating signal A sin $2\pi f_m t$ if
 - $\label{eq:alpha_series} \begin{array}{ll} \text{(A)} & \mathbb{A} < \frac{\mathbb{S}f_{\text{s}}}{f_{\text{m}}} \\ \text{(C)} & \mathbb{A} < \frac{\mathbb{S}f_{\text{m}}}{f_{\text{s}}} \end{array}.$

(B) $\begin{array}{c} A < \frac{\mathrm{Sf}_s}{2\pi f_m} \\ \\ \text{(D)} \end{array}$ $A < \frac{\mathrm{Sf}_m}{2\pi f_s} \\ . \end{array}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Explain the operation of an envelope detector for AM signals. Clearly explain diagonal clipping in such detectors. **(8)**
 - b. Derive a condition on the RC time constant in an envelope detector so that there is no diagonal when AM sinusoidal modulation clipping the signal has a to depth **(8)** m.
- Q.3 Discuss the parameter variation method for generation of FM signals. a. (8)
 - b. Describe an ADM system and explain how it overcomes some of the shortcomings of a simple delta modulation system. **(8)**
- Consider an FM signal v(t) given by **Q.4**

1/7/12 Code: A-

 $v(t) = 10 \cos(2\pi 10^7 t + 2.405 \sin 2\pi 10^3 t) \text{Volt}$

with t in seconds. This signal appears across a 75 Ω resistor. Find

- (i) The expression for the modulating signal. (4)
- (ii) The index of frequency modulation. (2)
- (iii) The bandwidth of the FM signal by Carson's rule. (2)
- (iv) The power in the carrier component. (4)
- (v) The total power in all the sidebands. (4)
- Q.5 Describe an integrate-and-dump filter receiver for binary data pulses represented by positive and negative rectangular pulses of amplitude V and duration T. Derive an expression for the probability of error. (16)
- Q.6 a. State and prove sampling theorem for low pass signals. (8)
 - b. Give the merits and shortcomings of VSB signals. Describe the transmitter filter and the receiver filter responses vis-à-vis the demodulator output as relevant to a television picture signal. (8)
- Q.7 Find the maximum tracking range of a deep space radar that operates at a frequency of 2.5 GHz, and has a peak pulse power of 500 kW. Its receiver noise figure is 1.1 and it uses a parabolic reflector of 64 m diameter. The corresponding figures for the beacon are: frequency = 2.5 GHz; peak pulse power = 50 W; noise figure = 13 dB and diameter of the parabolic reflector = 1.0 m. (16)
- Q.8 A message source generates ten messages,

$$m_1$$
, m_2 , m_3 , m_4 , m_5 , m_6 , m_7 , m_8 , m_9 and m_{10}

with a-priori probabilities of

 $0.25,\,0.17,\,0.10,\,0.22,\,0.06,\,0.05,\,0.08,\,0.01,\,0.02$ and 0.04, respectively, at a rate of 400 messages/ second.

- (i) Find the entropy of the source. (2)
- (ii) Find the information transmission rate. (1)
- (iii) Design the Huffman codes for the messages. (5)
- (iv) Find the average length of the code words. (1)
- (v) Find the code redundancy and code efficiency. (2)
- (vi) Are the codes uniquely decidable? Justify your answer. (2)
- (vii) What can be the maximum entropy of the source if the occurrence probabilities of the messages become controllable?

(3)

- Q.9 Write notes on any TWO of the following:
 - (i) Phased array radars.
 - (ii) Colour television receivers.

1/7/12 Code: A-20

(iii) Multiplexing techniques.

(iv) Narrowband noise.

(2 x 8)