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                                       PART - A                    (10 x 2 = 20) 

                        Answer ALL the Questions 

 

1. Prove that sin(ix) = I sinhx.  

   

2. Prove that cosh (A + B) = cosh A cosh B + sinh A sinhB. 

 

3. Find the distance between the planes  

x – 2y + 2z – 8 = 0 and 6y – 3x – 6z = 57. 

 

4. Find the tangent plane to the sphere  

x
2
 + y

2
 + z

2
 + 6x – 2y – 4z = 35 at (3, 4, 4). 

 

5. Prove that Γ(α + 1) = α Γ α. 

 

6. Define β(m, n) and prove β(m, n) = β(n, m). 

 

7. Find a unit normal vector ‘n’ of the cone of revolution  

z2 = 4(x2 + y2) at the point (1, 0, 2). 

 

8. Is the flow of a fluid whose velocity vector v = [secx, cosecx, 0] 

is irrotational? 

 



9. Evaluate 
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PART – B     (5 x 12 = 60) 

Answer All the Questions 

 

11. Express cos6θ and 
θ

θ

sin

6sin
in series of powers of cosθ. Hence 

obtain tan6θ in terms of tanθ. 

(or) 

12. (a) Find real and imaginary parts of sin(x + iy) and tan(u + iv). If 

sin(x + iy) = tan (u + iv), prove tanx sinh2v = tanhy sin2u. 

 

(b) Show that .
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13. (a) Find the equation of the plane through (1, 2, 3) and 

perpendicular to x – y + z = 2 and 2x + y – 3z = 5. 

 

 (b) Find the ratio in which the sphere x2 
+ y

2
 + z

2
 – 2x + 6y + 14z 

+ 3 = 0 divides the line joining points P(2, -1, -4) and Q(5,5,5). 

(or) 

14. (a) Find the equation of the sphere which pass through the circle 

x + 2y + 3z = 8. x
2
 + y

2
 + z

2
 – 2x – 4y = 0 and touches the plane 

4x + 3y = 25. 

 

 (b) Find the equation of the plane which bisects perpendicularly 

the join of (2, 3, 5) and (5, -2, 7) 



 

15. Using Beta and Gamma function, show that for any positive 

integer m  
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(or) 

16. (a) Explain 
.)1(
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pm −∫ in terms of Beta function and hence 

evaluate 
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(b) Evaluate dxex
x
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−
∞

∫ in terms of Gamma function.  

 

17. Verify Green’s theorem for ∫
C

[(xy + y2) dx + x2 dy], where C is 

bounded by y = x; and y = x2. 

(or) 

18. Using Stoke’s theorem evaluate ∫
C

[(x + y) dx + (2x – z) dy +  

(y + z) dz] where C is the boundary of the triangle with vertices 

(2, 0, 0), (0, 3, 0) and (0, 0, 6). 

19. (a) Change the order of integration in I = ∫ ∫
−1

0

2

2

x

x

xy dx dy and 

hence evaluate the same.  

 



 (b) Obtain a reduction formula for Vn =  ∫
2

0

π

xn cos 3x dx and 

hence evaluate V2. 

(or) 

20. (a) Evaluate ∫ ∫ ∫
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z zx
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(x + y + z) dx dy dz.  

 

 (b) Prove that ∫
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