SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - Common to ALL Branches (Except to Bio Groups)
Title of the paper: Engineering Mathematics - II
Semester: II
Max. Marks: 80
Sub.Code: ET202A/3ET202A/4ET202A/5ET202A Time: 3 Hours
Date: 10-12-2007

$$
\begin{array}{cl}
\text { PART - A } \\
\text { Answer ALL the Questions }
\end{array} \quad(10 \times 2=20)
$$

1. If α, β, γ are the roots of the equation $x^{3}-p x^{2}+q x-r=0$ find the value of $\sum \frac{1}{\alpha}$.
2. Find one root of the equation $27 x^{3}+42 x^{2}-28-8=0$. given that the roots are in G.P.
3. Find the radius of curvature of the curve $y=e^{x}$ at the point where it cuts the x -axis.
4. Find the envelope of the family of curves $y=\tan ^{2} \theta$, where θ is the parameter.
5. Solve $\left(D^{2}+D+1\right) y=0$.
6. Solve $\mathrm{P}^{2}-5 \mathrm{P}+6=0$.
7. State the Kirchoff's law.
8. Define simple harmonic motion and write the differential equation corresponding to it.
9. If $\nabla \Phi=\left(2 x y+z^{3}\right) \vec{i}+x^{2} \vec{j}+3 x z^{2} \vec{k}$ find Φ.
10. Prove that $\operatorname{grad}(\mathrm{r})=\frac{\vec{r}}{r}$.

$$
\begin{array}{cl}
\text { PART }-\mathrm{B} & (5 \times 12=60) \\
\text { Answer ALL the Questions }
\end{array}
$$

11. (a) Solve $x^{3}-9 x^{2}+26 x-24=0$. given that the roots are in A.P.
(b) Solve $6 x^{5}-x^{4}-4 x^{3}+4 x^{2}+x-6=0$.
(or)
12. (a) solve the equation $x^{4}-12 x^{3}+49 x^{2}-78 x+40=0$ by transforming it into one in which there is no term in x^{3}.
(b) If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, form the equation whose roots are $\alpha+\beta, \beta+\gamma, \gamma+\alpha$.
13. (a) Find the radius of curvature for the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$.
(b) A rectangular Box open at the top is to have a given capacity 32CC. Find the dimensions of the box requiring least material for its construction.

> (or)
14. (a) Prove that the evolute of the bractrix $\mathrm{x}=\mathrm{a}\left(\operatorname{cost}+\log \tan \frac{t}{2}\right)$, $\mathrm{y}=\mathrm{a} \sin \mathrm{t}$ is the catenary $\mathrm{y}=\mathrm{a} \cosh \left(\frac{x}{a}\right)$.
(b) Find the envelope of the family of straight lines $\frac{x}{a}+\frac{y}{b}=1$ where the parameters a and b connected by the relation $\mathrm{ab}=\mathrm{c}^{2}$.
15. (a) Solve $\left(\mathrm{D}^{2}+6 \mathrm{D}+8\right) \mathrm{y}=e^{-2 x}+\cos ^{2} x$.
(b) Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\frac{e^{3 x}}{x^{2}}$.
(or)
16. (a) Solve $\left(x^{3} D^{3}+2 x^{2} D^{2}+2\right) y=10\left(x+\frac{1}{x}\right)$.
(b) Solve the simultaneous equations $\frac{d x}{d t}+2 y+\sin t=0, \frac{d y}{d t}-2 x-\cot =0$.
17. (a) A voltage $\mathrm{e}^{-\mathrm{at}}$ is applied at $\mathrm{t}=0$ at a circuit containing inductance L and resistance . Show that the current at any time t is $\left(\frac{E}{R-a L}\right)\left(e^{-a t}-e^{-\frac{R t}{L}}\right)$ assuming $\mathrm{i}=0$ at $\mathrm{t}=0$ and the governing equation as .
(b) Two particles fall freely. One in a medium whose resistance is equal to k times the velocity and the other in a medium whose resistance equal to k times the squares of the velocity. If L_{1} and L_{2} are their maximum velocities respectively, show that $\mathrm{L}_{1}=\mathrm{L}_{2}{ }^{2}$

(or)

18. (a) A point moves with SHM. If, when at distances 3 m and 4 m from the centre of its path, its velocities are 8 m and 6 m per second respectively. Find its period, maximum velocity and acceleration when at its greatest distance from the centre.
(b) A horizontal beam of length ' $2 l$ ' is freely supported at both ends. If the differential equation of the elastic curve is $E I \frac{d^{2} y}{d x^{2}}=\frac{\omega x^{2}}{2}-\omega x$ where ω is the load per unit length, find the maximum deflection.
19. (a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at $(2,-1,2)$.
(b) Apply stoke's theorem to evaluate $\int_{C}\{(x+y) d x+(2 x-z) d y+(y+z) d z\}_{\text {where }} \mathrm{c}$ is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.
(or)
20. (a) Find the constants a, b, c such that $\vec{F}=(x+2 y+a z) \vec{i}+(b x-3 y-z) \vec{j}+(4 x+c y+2 z) \vec{k}$ is irrotational.
(b)Verify the Divergence theorem for $\vec{F}=4 x z \vec{i}-y^{2} \vec{j}+y z \vec{k}$ over the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0$ and $\mathrm{z}=1$.
