SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech

Title of the paper: Engineering Mathematics – II

(Common to all branches except Bio groups)

Semester : II Max. Marks: 80 Sub.Code: 6C0016 Time: 3 Hours Date: 21-05-2007 Session: FN

PART – A
$$(10 \times 2 = 20)$$

Answer ALL the Questions

- 1. Separate $\sin(x + iy)$ in to real and imaginary parts.
- 2. State Demoivre's Theorem.
- 3. Find the equation of the plane passing through (1, 2, 3) parallel to 4x + 5y 3z = 7.
- 4. Find the equation of the sphere whose centre is (2, -3, 1) and radius is 5 units.
- 5. Prove that $\int x^4 e^{-x^2} dx = \frac{3}{8} \sqrt{\pi}$
- 6. Find the value of $\int_{0}^{\frac{\pi}{2}} \sin^{5}\theta \cos^{7}\theta d\theta$.
- 7. Find the values of the constants a, b, c, so that $\vec{F} = (axy + bz^3)\vec{i} + (3x^2 cz)\vec{j} + (3xz^2 y)\vec{k}$ may be irrotational.

- 8. Prove that curl (grad ϕ) = 0.
- 9. Evaluate $\int_{0}^{2} \int_{0}^{1} \int_{0}^{3} dz dy dx$.
- 10. Evaluate $\int_{0}^{1} \int_{0}^{2} xydydx$ PART B
 Answer All the Questions $(5 \times 12 = 60)$
- 11. (a) Expand Cos 7θ in descending powers of $\cos\theta$.

(b) If
$$u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$$
 then prove that $\tanh \left(\frac{u}{2} \right) = \tan \left(\frac{\theta}{2} \right)$ (or)

- 12. (a) Separate $tan^{-1}(x + iy)$ in to real and imaginary parts.
 - (b) Prove that $sinh^{-1} x = log(x + \sqrt{x^2 + 1})$
- 13. Find the shortest distance between the lines

$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1} \text{ and } \frac{x}{1} = \frac{y-7}{-3} = \frac{z+7}{2}$$
(or)

14. Show that the lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} \text{ and } \frac{x+3}{-3} = \frac{x+7}{2} = \frac{z-6}{4} \text{ intersect.}$$
 Find the coordinates of the point of intersection and the equation to the plane containing the,

15. (a) Prove that
$$\beta(m, n) = \frac{\Gamma m \Gamma n}{\Gamma m + n}$$

(b) Find the values of
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}}$$

- (a) Find the value of ∫∫ x^m yⁿ dxdy taken over the area x ≥0, y ≥0, x + y ≤1 in terms of gamma functions.
 (b) Prove that β(m, n + 1) + β(m + 1, n) = β(m, n).
- 17. Verify Green's theorem in a plane for $\int_{c}^{c} \left[(3x^2 8y^2) dx + (4y 6xy) dy \right]_{\text{where c is the boundary of the region defined by the lines } x = 0, y = 0 \text{ and } x + y = 1.$ (or)
- 18. Verify gauss-Divergence Theorem for $\overrightarrow{F} = x^2 \overrightarrow{i} + z \overrightarrow{j} + yz \overrightarrow{k}$ over the cube formed by $x = \pm 1$, $y = \pm 1$, $z = \pm 1$
- 19. Change the order of integration $\int_{0}^{4} \int_{\frac{x^2}{4}}^{2\sqrt{x}} dy dx$ and then evaluate it.
- 20. Establish the reduction formula for $e^{ax} x^n$.