Seat No.:	Enrolment No.
Seat No.:	Enroiment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-III Regular / Remedial Examination December 2010

Subject code: 130101 Date: 16 /12 /2010 Subject Name: Fluid Mechanics Time: 10.30 am - 01.00 pm

		Total Marks: 70	
Insti	ructi	ions:	
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
0.1	()		0 =
Q.1	(a)	<u> </u>	07
		(I) Density (II) Weight density	
		(III) Specific volume (IV) Viscosity	
		(V) Kinematic viscosity (VI) Surface tension	
	(I-)	(VII) Capillarity	07
0.3	(b)		07
Q.2	(a)		07
	(b)	assumption for the same. What do you mean by gauge pressure, vacuum pressure and absolute	07
	(b)	pressure? Explain the working principle of	U /
		U-tube differential manometer with neat sketch.	
		O-tube differential manometer with heat sketch. OR	
	(b)	A horizontal venturimeter of 200 mm X 100 mm is used to measure the	07
	(6)	discharge of an oil of specific gravity 0.85. A mercury manometer is used for	0,
		the purpose. If the discharged is 100 litres per second and if the coefficient of	
		discharge of the venturimeter is 0.97, find the difference of mercury level in	
		between two limbs of manometer.	
Q.3	(a)	Define the following terms:	04
		(I) Total pressure (II) Centre of pressure	
		(III) Force of buoyancy (IV) Metacentre	
	(b)		05
		plate submerged in the liquid with usual notations.	
	(c)		05
		height of the cylinder if the specific gravity of the material of cylinder is 0.7	
		and it is floating in water with its axis vertical. State whether the equilibrium	
		is stable or unstable.	
0.2	(-)	OR	0.4
Q.3	(a)		04
	(b)	(I) Reynold's No. (II) Froude No. (III) Euler's No. (IV) Mach No. The pressure difference Δp in a pipe of diameter D and length L due to	07
	(b)	turbulent flow depends on velocity V, viscosity μ , density ρ and roughness k.	U/
		Using Buckingham's π -theorem obtain an expression for Δp .	
	(c)	Explain briefly:	03
	(0)	(I) Steady flow and unsteady flow	55
		(II) Uniform flow and non uniform flow	
		(III) Laminar and turbulent flow	
		(,	
Q.4	(a)	With usual notations derive the expression for the discharge through a	05
		triangular notch.	

	(b)	Velocity components of a fluid flow are given as $u = (6xy^2 + t)$, $v = (3yz + t^2 + 5)$, $w = (z + 3 ty)$, where x, y, z are given in meters and time t in seconds. Determine velocity vector at point P $(4, 1, 2)$ at time $t = 4$ seconds. Also determine the magnitude of velocity and acceleration of the flow for given location and time.	05
	(c)	Explain the following in brief: (I) Stream function (ψ) (II) Velocity potential function (Ø) (III) Circulation (Γ) (IV) Flow net	04
		OR	
Q.4	(a)	Derive the expression for shear stress and velocity distribution for the flow of viscous fluid through circular pipe with usual notations.	07
	(b)	Two parallel plates 80 mm apart have laminar flow of oil between them with maximum velocity of flow is 1.5 m/s. Calculate: (I) Discharge per meter width (II) Shear stress at the plate (III) The difference in the pressure between two points 20 meter apart. (IV) Velocity gradient at the plates.	07
		(V) Velocity at 20 mm from the plate.	
		Assume viscosity of oil 24.5 poise.	
Q.5	(a)	Prove that velocity of sound wave in a compressible fluid is given by $C = \sqrt{(k/\rho)}$ Where $k = \text{Pulk modulus of fluid and } a = \text{Density of fluid}$	07
	(b)	Where k= Bulk modulus of fluid and ρ = Density of fluid. Certain mass of air is passing through a horizontal pipe with a velocity of 350 m/s, at a section with corresponding pressure of 80 KN/m ² absolute and temperature 45°C. There is a change in diameter of the pipe at a section and pressure at this section is 128 KN/m ² , absolute. Find the velocity of air stream if the flow is adiabatic.	07
~ -		OR	^ -
Q.5	(a)	What do you understand by the terms major energy loss and minor energy losses in pipe? Derive Darcy-Weisbach equation with usual notations.	07
	(b)	State and prove Pascal's law for static fluid.	04
	(c)	Explain the condition of stability for a submerged body. ***********************************	03