Code: CS21
Time: 3 Hours

Subject: DATA STRUCTURES \& ALGORITHM DESIGN

Max. Marks: 100

MARCH 2011

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
Q. 1 a. Doubly linked lists are better as far as traversing the elements is concerned. Why don't we then always use them?
b. Find the address of the element $\mathrm{A}[6,4,8,10]$ in 4-dim array.
c. Write an algorithm to add an element in $\mathrm{i}^{\text {th }}$ stack of multiple stacks.
d. What is maximum no of nodes in a binary tree of depth k ?
e. How will you find cycle in an AOV (activity on vertex) network?
f. Using binary tree represent the data: X1, I, J, Z, FST, X2, K.
g. What do you understand by strongly connected component in a graph?
Q. 2 a. What is 0/1 Knapsack problem? Discuss its solution.
b. For the key values $10,15,20,25,30,35,40,45,50$, construct B-tree and insert a key value 38 in that tree.
Q. 3 a. Discuss Radix sort method with an example.
b. How will you count the number of binary trees for given number of nodes say n.
Q. 4 a. Use heap sort for the data: $26,5,77,1,61,11,59,15,48,9$ for sorting.
b. Represent the polynomial $x^{10} y^{3} z^{2}+2 x^{8} y^{3} z^{2}+3 x^{8} y^{2} z^{2}+x^{4} y^{4} z+6 x^{3} y^{4} z+2 y z$ using generalized list.
Q. 5 a. Given positive numbers $w_{i}, 1<=i<=n$ and m. Find out all subsets of w_{i} whose sum is m.
b. How will you handle overflow and collision detection in a hash table? Discuss methods.
Q. 6 a. Sort the following data using merge sort. Discuss the time complexity of the algorithm if the data size is n .
$15,10,2,11,17,12,5,8,9,1,3,13,6,14,7,16,4$
b. Discuss an algorithm to free a block using boundary tags.
Q. 7 a. Discuss an algorithm for inserting a string after $\mathrm{i}^{\text {th }}$ character of another string.
b. Discuss topological sort algorithm.

