ENGINEERING MECHANICS TENTATIVE SYLLABUS

1. Force System: Introduction, force, principle of transmissibility of force, resultant of a force system, resolution of a force, moment of force about a line. Varigon's theorem, couple, resolution of force into force and a couple, properties of couple and their application to engineering problems.

2. Equilibrium: Force body diagram, equations of equilibrium and their applications to engineering problems, equilibrium of two force and three force member

3. Structure: Plane truss, perfect and imperfect truss, assumption in the truss analysis, analysis of perfect plane trusses by the method of joints, method of section and graphical method.

4. Friction: Static and Kinetic friction, laws of dry friction, co-efficient of friction, angle of friction, angle of repose, cone of friction, frictional lock, friction of flat pivot and collered thrust bearings, friction in journal-bearing, friction in screws, derivation of equation.

T1 / T2 = le A and its application.

5. Distributed Forces: Determination of center of gravity, center of mass and centroid by direct integration and by the method of composite bodies mass moment of inertia and area moment of inertia by direct integration and composite bodies method, radius of gyration, parallel axis theorem, Pappus theorems, polar moment of inertial., Dynamics.

6. Kinematics of Particles: Rectilinear motion, plane curvilinear motion-rectangular coordinates, normal and tangential coordinates

7. Kinetics of Particles: Equation of motion, rectilinear motion and curvilinear motion, work energy equation, conservation of energy, impulse and momentum conservation of momentum, impact of bodies, co-efficient of restitution, loss of energy during impact.

8. Kinematics of Rigid Bodies: Concept of rigid body, types of rigid body motion, absolute motion, introduction to relative velocity, relative acceleration (Corioli's component excluded) and instantaneous center of zero velocity, Velocity and acceleration polygons for four bar mechanism and single slider mechanism.

9. Kinetics of Rigid Bodies: Equation of motion, translatory motion and fixed axis rotation, application of work energy principles to rigid bodies conservation of energy.

10. Vibrations: Classification, torsional free vibrations-single rotor and two rotor system, Spring mass system-its damped (linear dash pot) and undamped free vibrations, spring in series and parallel, simple problems.