12/31/11

Code: D-15

Subject: CONTROL ENGINEERING

December 2005

Time: 3 Hours

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or best alternative in the following: **Q.1**

(2x10)

- For type one system, the steady-state error due to step input is equal to
 - (A) zero.

(B) finite constant.

(C) infinite.

- (D) indeterminate.
- b. Consider the equation $2s^4 + s^3 + 3s^2 + 5s + 10 = 0$. This equation has _____ in the right half of s-plane.
 - (A) One root

(B) two roots

(C) three roots

- (D) four roots
- The transfer function of a phase-lag controller is given by
 - (A) $\frac{1+aTs}{1+Ts}$, a < 1.

(B)
$$\frac{1+aTs}{1+Ts}$$
, $a > 1$.
(D) $\frac{1-aTs}{1+Ts}$, $a > 1$.

(C)
$$\frac{1-aTs}{1+Ts}$$
, a < 1.

(D)
$$\frac{1}{1+T_3}$$
, a > 1

- d. The Nyquist plot of $G(j\varpi)H(j\varpi)$ of a system passes through the $(-1, j\circ)$ point in the $G(j\varpi)H(j\varpi)$ plane, the gain margin of the system is
 - (A) greater than zero.
- (B) zero.

(C) less than zero.

- **(D)** infinite.
- $F(s) = \frac{5}{s(s^2 + s + 2)} \text{ where } F(s) \text{ is the Laplace transform of } f(t). \quad \lim_{t \to \infty} f(t)$ e. Consider the function equal to
 - (A) zero

(B) $\frac{5}{2}$

(C) 5

- (D) infinity
- For a tachometer if $\theta(t)$ is the rotor displacement, e (t) is the output voltage and K_t is the

12/31/11 Code: A-20

tachometer constant, then the transfer function is defined as

(B)
$$\frac{K_t}{s}$$

(D) K_t

g. The system matrix of a continuous time system is given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, the characteristic equation is given by

(A)
$$s^2 + 5s + 3 = 0$$
.

(B)
$$s^2 - 3s - 5 = 0$$

(C)
$$s^2 + 3s + 5 = 0$$
.

(D)
$$s^2 + s + 2 = 0$$

h. The root-locus plot is constructed using

- (A) the magnitude condition only.
- **(B)** the magnitude and phase angle conditions.
- **(C)** the phase angle condition alone.
- **(D)** The asymptotes.

i. The unit step response of a second order underdamped system exhibits the peak overshoot of 15%. If the magnitude of the input is doubled, the peak overshoot will be

(A) 30%

(B) 15%

(C) 7.5%

(D) none of these.

j. In a second order system, the damping ratio of unity corresponds to the following condition:

- (A) critically damped
- (B) over damped

(C) under damped

(D) undamped

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Consider the system shown in Fig.2 below. For $\xi = 0.6$ and $\omega_n = 5 \, \text{rad/sec}$. Obtain (i) rise time t_r (ii) peak time t_r (iii) maximum over shoot t_r and settling time ts (for the 2% criterion) when the system is subjected to a unit step input. (16)

12/31/11 Code: A-20

Q.3 Consider that a third-order control system has the characteristic equation $s^3 + 3408.3 s^2 + 1204000 s + 1.5 \times 10^7 \text{ K} = 0$. Find the condition on 'K' for the system to be stable. (16)

- Q.4 The loop transfer function of a unity feedback control system is given by $G(s)H(s) = \frac{5}{s(s+1)(s+2)}$. Sketch the Nyquist plot and using it find out if the closed-loop system is stable. (16)
- Q.5 The characteristic equation of a feedback control system is given by $s^3 + 4s^2 + 20s + K = 0$. Where K is a variable parameter. Sketch the root locus diagram of the system when 'K' takes all positive values from zero to infinity. Mark all salient points in the diagram. (16)
- Q.6 a. Derive the Nyquist criterion of stability of a feedback control system whose open-loop transfer function is stable.(8)
 - b. What is meant by the terms "gain margin" and "phase-margin" of a control system? (8)
- Q.7 A unity-feedback control system has an open-loop transfer function given by Determine the unit-step and unit-impulse responses for zero initial conditions.

 (16)
- Q.8 Write short notes on any TWO of the following:-
 - (i) Constant M and N circles.
 - (ii) Phase-lead compensation.
 - (iii) Insensitivity and Robustness. (16)
- Q.9 A feedback control system incorporating a dead-time element has the open-loop transfer function $G(s)H(s) = \frac{2}{s(s+2)}e^{-0.2 \cdot s}$ given by . Determine the gain and phase-margins of the system. (16)

12/31/11 Code: A-20