JUNE 2010 ## AMIETE - ET (OLD SCHEME) | Code: AE04
Time: 3 Hours | | | | Subjec | Subject: MATERIALS AND PROCESSES
Max. Marks: 100 | | | |--------------------------------|--|---|--|--|--|-------------------------|--| | • Qu
wi
no
• Ou
qu | uesti
ritte
whe
ut of
iestic | on 1 in tere else the i | he space provided for
se.
remaining EIGHT Q
rries 16 marks. | rries 20 r
r it in the
questions | narks. Answer to Q.1
answer book supplie
answer any FIVE Qu
ay be suitably assume | d and
lestions. Each | | | Q.1 | Choose the correct or the best alte | | | lternative i | native in the following: (2×10) | | | | | a. | Which one of the following material is Piezoelectric? | | | | | | | | | (A)
(C) | Pb ₂ Au
MgAl ₂ O ₄ | | (B) BaTiO 3
(D) NiFe 2O4 | | | | | b. | | | | | | | | | | , , | Less than zero
Greater than one | | (B) Less than one by (D) Equals to zero | ut positive | | | | c. | A so | emiconductor is electr | ically neu | tral because | | | | | | | No majority carriers No free carriers ers | | (B) No minority carr (D) Equal positive & | | | | | d. The electrostatic nature of ionic bond makes it | | | | | | | | | | (B)
(C) | Directional Non-directional Weak Applicable to group I | V elemen | ts. | | | e. The miller indices are same for | | | (A) Perpendicular planes(C) Parallel planes | (B) Crystal planes(D) Three crystallographic axes | | | | | | |--|--|---|---|--|--|--|--|--| | | f. | The relaxation times (τ) in a perfe | ect dielectric is | | | | | | | | | $(A) \propto (C) 1 < \tau < \infty$ | (B) 1 (D) 0 | | | | | | | | g. | g. For small size, high frequency coils, the most common core material is | | | | | | | | | | (A) Powdered iron(C) Ferrite | (B) Air
(D) Steel | | | | | | | | h. Magnetic recording tape is most commonly made from | | | | | | | | | | | (A) Ferric oxide(C) Small particles of iron | (B) Silicon iron(D) Alnico | | | | | | | | i. | i. Solder is an alloy of | | | | | | | | | | (A) Copper and aluminium(C) Tin and Lead | (B) Nickel, Copper and Zinc(D) Silver, Copper and Lead | | | | | | | | j. | . Which of the following material is the best conductor of electricity? | | | | | | | | | | (A) Aluminium(C) Tungsten | (B) Carbon(D) Copper | | | | | | | Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks. | | | | | | | | | | Q.2 | a. | • 1 | c bonds observed in solid materials? of them with suitable (8) | | | | | | | | b. What is atomic packing factor? Find the atomic packing factor for BCC and FCC structures.(8) | | | | | | | | | Q.3 | a. | What is point imperfect defects. (8) | ion? Discuss various point | | | | | | | | b. | State and explain Gibb's importance? (8) | phase rule. What is its | | | | | | - Q.4 a. Calculate the mobility and average time of collision of the electrons in copper. If the density of copper is 8.94 gm/ cm³, the resistivity is $1.73 \times 10^{-8} \Omega$ m and the atomic weight is 63.5. (8) - b. Give the chemical composition, properties and uses of Nichrome, Manganin and Constantan.(8) - Q.5 a. A potential difference of 2V is applied across the faces of a small germanium plate of area 1 cm², and of thickness 0.3 mm. Given, the concentration of free electrons in germanium is 2×10¹⁹/m³, mobilities of electron and holes are 0.36 m²/V-sec and 0.17 m²/V-sec respectively. Calculate the value of current produced. (8) - b. What is Hall effect? Derive the relation for Hall Voltage, charge density and mobility by assuming the presence of only one type of charge carrier. (8) - Q.6 a. What is piezoelectric effect? How is Quartz used for generating ultrasonic waves? Also write some uses of piezoelectric crystal. (8) - b. Write the properties and uses of mica, bakelite and polyvinyl chloride as insulating materials. - Q.7 a. Differentiate between soft and hard magnetic materials with suitable examples and B-H plots. (8) - b. Calculate eddy current loss in w/kg in a specimen of alloy steel for maximum flux density of 1.1 wb/m² and frequency of 50 Hz, using 0.5 mm thick sheets. Take density and resistivity of alloy steel as 7800 kg/m^3 and $30 \times 10^{-8} \Omega \text{m}$ respectively. If hysteresis loss in each