(INDIANET GROUP)

Solution1: a, A_{1}, A_{2}, b are in arithmetic progression
$\Rightarrow A_{1}, A_{2}$ are two arithmetic means of a, b
$\Rightarrow A_{1}=a+\frac{b-a}{3}=\frac{2 a+b}{3}$

$$
\begin{equation*}
A_{2}=a+\frac{2(b-a)}{3}=\frac{a+2 b}{3} \tag{I}
\end{equation*}
$$

a, G_{1}, G_{2}, b are in geometric progression Let r be the common ratio.
$\mathrm{G}_{1}=\mathrm{ar}, \mathrm{G}_{2}=a \mathrm{r}^{2}, \mathrm{~b}=a \mathrm{r}^{3}$
$\Rightarrow r=(b / a)^{1 / 3}$
$\Rightarrow G_{1}=a\left(\frac{b}{a}\right)^{1 / 3}=b^{1 / 3} a^{2 / 3}$
a, H_{1}, H_{2}, b are in the harmonic progression
$\Rightarrow \frac{1}{a}, \frac{1}{H_{1}}, \frac{1}{H_{2}}, \frac{1}{b}$ are in AP
Let d' be the common difference.

$$
\begin{gather*}
\Rightarrow \frac{1}{H_{1}}=\frac{1}{a}+a^{\prime}, \frac{1}{H_{2}}=\frac{1}{a}+2 a^{\prime}, \quad \frac{1}{b}=\frac{1}{a}+3 a^{\prime} \\
\Rightarrow a^{\prime \prime}=\frac{a-b}{3 a b} \\
\Rightarrow \frac{1}{H_{1}}=\frac{1}{a}+\frac{a-b}{3 a b}=\frac{3 b+a-b}{3 a b}=\frac{a+2 b}{3 a b} \\
H_{1}=\frac{3 a b}{a+2 b} \tag{V}
\end{gather*}
$$

$\frac{1}{H_{2}}=\frac{1}{a}+\frac{2(a-b)}{3 a b}=\frac{3 b+2 a-2 b}{3 a b}=\frac{2 a+b}{3 a b}$
$H_{2}=\frac{3 a b}{2 a+b}$

$$
\begin{aligned}
\therefore \frac{G_{1} G_{2}}{H_{1} H_{2}} & =\frac{\left(b^{1 / 3} a^{2 / 3}\right)\left(a^{1 / 3} b^{2 / 3}\right)}{\left(\frac{3 a b}{a+2 b}\right)\left(\frac{3 a b}{2 a+b}\right)} \\
& =\frac{a b}{9 a^{2} b^{2}}(a+2 b)(2 a+b) \\
& =\frac{(a+2 b)(2 a+b)}{9 a b} \\
\frac{A_{1}+A_{2}}{H_{1}+H_{2}} & =\frac{\left(\frac{2 a+b}{3}+\frac{a+2 b}{3}\right)}{\frac{3 a b}{a+2 b}+\frac{3 a b}{2 a+b}} \\
& =\frac{3(a+b)}{3} \\
& =\frac{(a+2 b)(2 a+b)}{9 a b}
\end{aligned}
$$

$\Rightarrow \frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}=\frac{(2 a+b)(a+2 b)}{9 a b}$

Solution 2:

$\mathrm{P}(\mathrm{n}):(25)^{\mathrm{n}}+1-24 \mathrm{n}+5735$ is divisible by $(24)^{2}$
LHS of $P(1):(25)^{2}-24+5735$
$=(625+5735)-24$
$=6360-24$
$=24(265-1)$
$=24 \times 264$
$=24 \times 24 \times 11$ is divisible by $(24)^{2}$
Hence, $P(1)$ is true
Let us assume that $\mathrm{P}(\mathrm{k})$ is true
$\Rightarrow(25)^{k}+1-24 \mathrm{k}+5735$ divisible by $(24)^{2}$
Now, we have to prove that $P(k+1)$ is true.
i.e. $(25)^{k}+2-24(k+1)+5735$ is divisible by $(24)^{2}$ if $P(k)$ is true.
$(25)^{k}+2-24(k+1)+5735$
$=(25 k+1) .25+25(-24 k+5735)-25(5735-24 k)-24(k+1)+5735$
$=25[P(k)]-24(5735)+24 \times 25 \mathrm{k}-24 \mathrm{k}-24$
$=25 \mathrm{P}(\mathrm{k})-24[5735-24 \mathrm{k}+1]$
$=25 \mathrm{P}(\mathrm{k})-24[5736-24 \mathrm{k}]$
$=25 P(k)-(24)^{2}[239-k]$
$\Rightarrow P(k+1)$ is true.
Hence, proved
Solution 3: Let $E=\cos \tan ^{-1} \sin \cot ^{-1} x$
Let $\cot ^{-1} \mathrm{x}=\theta$
$\therefore \quad x=\cot \theta$
$\Rightarrow E=\cos \tan ^{-1} \sin \theta$
$x=\cot \theta$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{1+\cot ^{2} \theta}}=\frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow E=\cos \tan ^{-1}(\sin \theta)$

$$
\begin{equation*}
=\cos \tan ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right) \tag{3}
\end{equation*}
$$

Let $\tan ^{-1} \frac{1}{\sqrt{1+x^{2}}}=y$
$\frac{1}{\sqrt{1+x^{2}}}=\tan y$
To evaluate $\mathrm{E}=\cos \mathrm{y}$:
We have $\cos \theta=\frac{1}{\sqrt{1+\tan ^{2} \theta}}$
$\Rightarrow \cos y=\frac{1}{\sqrt{1+\tan ^{2} y}}$
$=\frac{1}{\sqrt{1+\left(\frac{1}{\sqrt{1+x^{2}}}\right)^{2}}}$ (from equation (4))
$=\frac{1}{\sqrt{1+\frac{1}{1+x^{2}}}}$
$=\frac{\sqrt{1+x^{2}}}{\sqrt{2+x^{2}}}$
$\Rightarrow E=\frac{\sqrt{1+x^{2}}}{\sqrt{2+x^{2}}}$
Hence proved.

Solution 4.

Total coins $=\mathrm{N}$
Number of fair coins $=\mathrm{m}$
Therefore, number of biased coins $=\mathrm{N}-\mathrm{m}$

Case I:

Let coin drawn be fair:
Let us calculate the probability $P(A)$ of getting a head first and then a tail.
$P(A)=p(H) p(T)$
$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4} \quad\left[\begin{array}{l}p(H)=\text { probability of getting head from fair coin }=\frac{1}{2} \\ p(T)=\text { probability of getting tail from fair coin }=\frac{1}{2}\end{array}\right]$

Case II:

Let the coin drawn be biased:
Let us calculate the probability $P(B)$ of getting a head first and then a tail.
$P(B)=p^{\prime}(H) p^{\prime}(T)$

$$
=\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)=\frac{2}{9}
$$

[$p^{\prime}(H)=$ probability of getting a head from the biased coin.
$p^{\prime}(T)=$ probability of getting a tail from the biased coin
$p^{\prime}(\mathrm{H})=2 / 3$ (given)
$p^{\prime}(T)=1-p^{\prime}(H)=1-2 / 3=1 / 3$]
Let us define
$P^{\prime}(A)=P(A) \times$ probability of drawing a fair coin

$$
\begin{equation*}
=(1 / 4)\left(\frac{m}{n}\right) \tag{ii}
\end{equation*}
$$

and $P^{\prime}(B)=P(B) \times$ probability of drawing a biased coin.

$$
\begin{equation*}
=\frac{2}{9}\left(\frac{N-m}{N}\right) \tag{iii}
\end{equation*}
$$

Then from Bayes Theorem, we get,
Probability (drawing a fair coin) $=\frac{P^{\prime}(A)}{p^{\prime}(A)+P^{\prime}(B)}$
From equation (i), (ii), (iii) probability (of drawing a fair coin)
$=\frac{\frac{1}{4} \frac{m}{n}}{\frac{1}{4} \frac{m}{N}+\frac{2}{9} \frac{N-m}{N}}$
$=\frac{\frac{m}{4}}{\frac{m}{4}+\frac{2}{9}(N-m)}$
$=\frac{9 m}{9 m+8(N-m)}$
$=\frac{9 m}{8 N+m}$

Solution 5:

$$
\begin{aligned}
& Z p+q-Z p-Z q+1=0 \\
& \Rightarrow(Z p-1)(Z q-1)=0
\end{aligned}
$$

\therefore Either ${ }^{\alpha}$ is a $\mathrm{p}^{\text {th }}$ root of unity or $\mathrm{q}^{\text {th }}$ root of unity.
Using the properties of $\mathrm{n}^{\text {th }}$ root of unity:
either $1+\alpha+\alpha^{2}+\ldots+\alpha^{p-1}=0$
or $1+\alpha+\alpha^{2}+\ldots+\alpha^{q-1}=0$
Suppose both the equations hold simultaneously. Without loss of generalisation let $\mathrm{p}>\mathrm{q}$.
$\therefore 1+\alpha+\alpha^{2}+\ldots+\alpha^{p-1}=0$
$\Rightarrow 1+\alpha+\alpha^{2}+\ldots \ldots+\alpha^{q-1}+\alpha^{q}+\alpha^{q+1}+\ldots+\alpha^{p-1}=0$
$\Rightarrow 0+\alpha^{q}+\alpha^{q+1}+\ldots+\alpha^{p-1}=0$
$\Rightarrow \alpha^{q}\left[1+\alpha+\ldots+\alpha^{p \rightarrow q-1}\right]=0$
Now, $\alpha^{q}=1$
\therefore the equation implies that
$1+\alpha+\ldots+\alpha^{p-q-1}=0$
Hence ${ }^{\alpha}$ should be the $(p-q)^{\text {th }}$ root of unity i.e., $\alpha^{p-1}=1$
$\Rightarrow p-q$ is a multiple of $q(\because q$ is prime $)$
i.e., $p-q=n q$
$\Rightarrow p=(n+1) q$
$\Rightarrow \mathrm{p}$ is not prime which is a contradiction.
Hence proved.

Solution 6:

Let the equation of L be:
$y=m x$ (i) (\because it passes through the origin)
Let us find the point of intersection of (i) and $x+y=1$.
Substituting $y=m x$ in $x+y=1$,
we get $x=\frac{1}{m+1}$
and $y=\frac{m}{m+1}$
Hence the coordinates of P are $\left(\frac{1}{m+1}, \frac{m}{m+1}\right)$
Similarly let us find the point of intersection of (i) with $x+y=3$.
Substituting $y=m x$ in $x+y=3$ we get
$x=\frac{3}{m+1}$
$y=\frac{3 m}{m+1}$
Hence, the coordinates of Q are $\left(\frac{3}{m+1}, \frac{3 m}{m+1}\right)$
Slope of $L_{1}=2$,
since it is parallel to $2 x-y=5$.
Slope of $L_{2}=-3$,
since it is parallel to $3 x+y=5$.
\therefore Equation of $\mathrm{L}_{1}:\left(y-\frac{m}{m+1}\right)=2\left(x-\frac{1}{m+1}\right)$
\therefore Equation of $\mathrm{L}_{2}:\left(y-\frac{3 m}{m+1}\right)=-3\left(x-\frac{3}{m+1}\right)$
Subtracting (ii) from (i), we get
$\frac{2 m}{m+1}=5 x-\frac{11}{m+1}$
$\Rightarrow x=\frac{11+2 m}{5(m+1)}$.
$\Rightarrow 5 m x+5 x=11+2 m$
$\Rightarrow m(5 x-2)=11-5 x$
$\Rightarrow m=\frac{11-5 x}{5 x-2}$
Substituting this in (i) to eliminate m we get
$y=2 x+\frac{15-15 x}{9}$
$\Rightarrow 3 y=x+5$
which is the equation of a straight line.
Hence proved.

Solution 7:

Let the equation of the straight line be:
$(y-2)=m(x-8)$
Substituting $x=0$, we get, $x=\frac{(8 m-2)}{m}$
$y=2-8 m$
Therefore, $\mathrm{Q} \equiv(0,2-8 \mathrm{~m})$
Substituting $y=0$, we get,
Therefore, $p \equiv\left(\frac{8 m-2}{m}, 0\right)$

$$
\begin{aligned}
O P & =\frac{8 m-2}{m} \\
O Q & =2-8 m \\
\mathrm{~L} & =O P+O Q \\
& =\frac{8 m-2}{m}+2-8 m \\
& =\frac{-8 m^{2}+10 m-2}{m}
\end{aligned}
$$

Differentiating with respect to m and setting it equal to zero for extrema:
$\frac{d L}{d m}=\frac{m(-16 m+10)-\left(-8 m^{2}+10 m-2\right)}{m^{2}}=0$
$\Rightarrow-8 m^{2}+2=0$
$\Rightarrow m^{2}=\frac{1}{4}$
$\Rightarrow m= \pm \frac{1}{2}$
But m is given to be negative.
Therefore, $m=-\frac{1}{2}$
This m corresponds to the absolute minima (as the maxima is unbounded)
Value of absolute minima of OP + OQ
$=\frac{-2-5-2}{-\frac{1}{2}}=18$
Solution 8:

Let the equation of ellipse be :
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Let a point P on the ellipse $b e(a \cos \theta, b \sin \theta)$
Then the equation of tangent at P is :
$\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$
$\Rightarrow m=\frac{-b}{a \tan \theta}$
Equation of line L_{1} joining the centre of the ellipse $(0,0)$ to the point $P(a \cos \theta, b \sin \theta)$ is
$y=\frac{b}{a} \tan \theta \cdot x$
Slope of the line L_{2} perpendicular to tangent and passing through the focus $S(a e, 0)$ is
$m_{2}=\frac{-1}{m}=\frac{a \tan \theta}{b}$
So equation of line L_{2} is
$y-0=\frac{a \tan \theta}{b}(x-a e)$
$\Rightarrow y=\frac{a \tan \theta}{b}(x-a e)$
Solving (1) and (2) for x, we get
$\frac{b}{a} \tan \theta \cdot x=\frac{a}{b} \tan \theta(x-a e)$
$\Rightarrow \frac{b^{2}-a^{2}}{a b} \times=\frac{-a^{2} e}{b}$
$\Rightarrow \frac{a^{2}-b^{2}}{a^{2}} x=a e$
But $\frac{a^{2}-b^{2}}{a^{2}}=e^{2}$
The equation is $e^{2} x=a e$
$\Rightarrow x=a / e$ which is the equation of the corresponding directrix. Hence proved

Solution 9:

Shaded area indicates the area to be calculated
$A_{1}=\int_{x=1}^{x=\sqrt{2}}\left[y_{1}-y_{2}\right]$
$y_{2}=2-x^{2}$ for $-\sqrt{2}<x<\sqrt{2}$
So,
$A_{1}=\int_{1}^{\sqrt{2}}\left[x^{2}-\left(2-x^{2}\right)\right] d x$
$=\int_{1}^{\sqrt{2}}\left(2 x^{2}-2\right) d x$
$=2 \int_{1}^{\sqrt{2}}\left(x^{2}-1\right) d x$
$=2\left[\left.\frac{x^{3}}{3}\right|_{1} ^{\sqrt{2}}-(\sqrt{2}-1)\right]$
$=2\left[\frac{1}{3}[2 \sqrt{2}-1]-[\sqrt{2}-1]\right]$
$=\frac{4}{3}+\frac{2 \sqrt{2}}{3}$

$$
\begin{aligned}
& A_{2}=\int_{x=\sqrt{2}}^{2}\left[y_{3}-y_{2}\right] d x \\
&=\int_{\sqrt{2}}^{2}\left[2-\left(x^{2}-2\right)\right] d x \\
&=\int_{\sqrt{2}}^{2}\left[4-x^{2}\right] d x \\
&=4[2-\sqrt{2}]-\left.\frac{x^{3}}{3}\right|_{\sqrt{2}} ^{2} \\
&=8-4 \sqrt{2}-\frac{8}{3}+\frac{2 \sqrt{2}}{3} \\
& A_{2}=\frac{16}{3}-\frac{10 \sqrt{2}}{3} \\
& A=A_{1}+A_{2} \\
&=\frac{2 \sqrt{2}}{3}+\frac{4}{3}+\frac{16}{3}-\frac{10 \sqrt{2}}{3} \\
&=\frac{20}{3}-\frac{8 \sqrt{2}}{3} \\
&=\frac{20}{3}-\frac{8}{3} \sqrt{2} \\
& \hline
\end{aligned}
$$

Solution 10:

Given, $\sum_{r=1}^{3}\left(a_{r}+b_{r}+c_{r}\right)=3 L$

$$
\Rightarrow\left(a_{1}+b_{1}+c_{1}\right)+\left(a_{2}+b_{2}+c_{2}\right)+\left(a_{3}+b_{3}+c_{3}\right)=3 L
$$

$$
\Rightarrow\left(a_{1}+a_{2}+a_{3}\right)+\left(b_{1}+b_{2}+b_{3}\right)+\left(c_{1}+c_{2}+c_{3}\right)=3 L
$$

Now,
$\frac{X+Y+Z}{3} \geq(X Y Z)^{\frac{1}{3}}$
$\mathrm{AM} \geq \mathrm{GM}$
$\Rightarrow \frac{\left(a_{1}+a_{2}+a_{3}\right)+\left(b_{1}+b_{2}+b_{3}\right)+\left(c_{1}+c_{2}+c_{3}\right)}{3}=L$
If $X=a_{1}+a_{2}+a_{3}$
$Y=b_{1}+b_{2}+b_{3}$
$Z=c_{1}+c_{2}+c_{3}$
then, $\frac{X+Y+Z}{3} \geq(X Y Z)^{\frac{1}{3}}$
$\Rightarrow L \geq(X Y Z)^{1 / 3}$
$\Rightarrow L^{3} \geq X Y Z$
$\Rightarrow L^{3} \geq\left(a_{1}+a_{2}+a_{3}\right)\left(b_{1}+b_{2}+b_{3}\right)\left(c_{1}+c_{2}+c_{3}\right)$

Also, $A+B+C \geq \sqrt{A^{2}+B^{2}+C^{2}}\left[\right.$ since $\left.(A+B+C)^{2}-\left(A^{2}+B^{2}+C^{2}\right)=2(A B+B C+C A) \geq 0\right]$
$\Rightarrow L^{3} \geq \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}} \sqrt{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}}$
Volume of parallelopiped $=\left[\begin{array}{lll}\bar{a} & b & \bar{c}\end{array}\right]$

$$
\begin{equation*}
=[\bar{a} \cdot(\bar{b} \times \bar{C})] \leq|\bar{a}||\bar{b}||\bar{c}| \text { [equality holds for } \tag{2}
\end{equation*}
$$

$\Rightarrow V \leq \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \cdot \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}} \cdot \sqrt{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}}$
From (1) and (2)

$V \leq L^{3}$

Solution 11:

$I=\int\left(x^{3 m}+x^{2^{m}}+x^{m}\right)\left(2 x^{2 m}+3 x^{m}+6\right)^{1 / m} d x, x>0$
Substitute $x^{m}=y$
Taking log,
$m \log x=\log y$
Differentiating,
$m \frac{1}{x} d x=\frac{1}{y} d y$
$\Rightarrow d x=\frac{x}{m y} d y$
$=\frac{y^{1 / m}}{m y} d y$
$\Rightarrow I=\int\left(y^{3}+y^{2}+y\right)\left(2 y^{2}+3 y+6\right)^{1 / m} \frac{y^{1 / m}}{m y} d y$
$=\frac{1}{m} \int\left[\frac{y^{3}+y^{2}+y}{y}\right]\left[\left(2 y^{2}+3 y+6\right)^{1 / m}\right] y^{\frac{1}{m}} d y$
$=\frac{1}{m} \int\left(y^{2}+y+1\right)\left(2 y^{3}+3 y^{2}+6 y\right)^{1 / m} d y$
Now put $2 y^{3}+3 y^{2}+6 y=t^{m}$
Differentiating both sides,
$\left(6 y^{2}+6 y+6\right) d y=m t^{m-1} d t$
$\therefore\left(y^{2}+y+1\right) d y=\frac{m t^{m-1}}{6} d t$
$\therefore I=\frac{1}{m} \int \frac{m}{6} t^{m-1}\left(t^{m}\right)^{1 / m} d t$
$=\frac{1}{6} \int t^{m-1} \cdot t d t$
$=\frac{1}{6} \int t^{m} d t$
$=\frac{1}{6} \frac{t^{m+1}}{(m+1)}+c$
$=\frac{\left(2 y^{3}+3 y^{2}+6 y\right)^{\frac{m+1}{m}}}{6(m+1)}+c$
$\therefore I=\frac{1}{6(m+1)}\left[2 x^{3 m}+3 x^{2 m}+6 x^{m}\right]\left(\frac{m+1}{m}\right)+c$

Solution 12:

$$
\begin{aligned}
f(x) & =\left\{\begin{array}{l}
x+a, x<0 \\
|x-1|, x \geq 0
\end{array}\right. \\
& =\left\{\begin{array}{l}
x+a, x<0 \\
x-1, x \geq 1 \\
1-x, 0 \leq x<1
\end{array}\right. \\
g(x) & =\left\{\begin{array}{l}
x+1, \quad x<0 \\
(x-1)^{2}+b,
\end{array} \text { if } x \geq 0\right.
\end{aligned}
$$

$$
g \circ f(x)=g(f(x))= \begin{cases}f(x)+1 & , f(x)<0 \\ {[f(x)-1]^{2}+b,} & \text { if } f(x) \geq 0\end{cases}
$$

Now, $\mathrm{f}(\mathrm{x})<0$
$\Rightarrow\left\{\begin{array}{l}x+a<0 \text { when } x<0 \\ x-1<0 \text { when } x \geq 1 \\ 1-x<0 \text { when } 0 \leq x<1\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}x<-a \text { when } x<0 \\ x<1 \text { when } x \geq 1 \\ x>1 \text { when } 0 \leq x<1\end{array}\right.$

The last two cases are not possible
So, $f(x)<0$ if $x<-a$
a is positive
$f(x)<0$ if $x<-a$
$\Rightarrow f(x) \geq 0$ for $x>-a$
Now,
$g \circ f(x)=\left\{\begin{array}{l}f(x)+1, x<-a, \text { where } f(x)=x+a \\ {[f(x)-1]^{2}+b, x \geq-a}\end{array}\right.$

$$
\begin{aligned}
g \circ f(x) & = \begin{cases}x+a+1, & x<-a \\
(x+a-1)^{2}+b, & -a \leq x<0\end{cases} \\
& =(1-x-1)^{2}+b, 0 \leq x<1 \\
& =x^{2}+b, 0 \leq x<1 \\
\operatorname{gof}(x) & =(x-1-1)^{2}+b, x \geq 1 \\
& =(x-2)^{2}+b, x \geq 1
\end{aligned}
$$

Since, gof is continuous for all real x, therefore, $(a-1)^{2}+b=b$
$\Rightarrow a=1, b$ is any real number.
For $a=1, b \in R$, gof is continuous
$\Rightarrow \operatorname{gof}(x)= \begin{cases}x+2 & , x<-a \\ x^{2}+b & ,-a \leq x<1 \\ (x-2)^{2}+b, & x \geq 1\end{cases}$
So, gof is differentiable at $x=0$ if $a=1, b \in R$.

