76.	Which of the following could act as apropellant for rockets?
	(a) Liquid oxygen + liquid argon (b) Liquid hydrogen + liquid oxygen
	(c) Liquid nitrogen + liquid oxygen (d) Liquid hydrogen + liquid nitrogen
77.	The reaction of chloroform with alcoholic KOH and p-toluidine forms
	•
	(a) H_3C — \bigcirc — N_2Cl (b) H_3C — \bigcirc — \bigcirc — $NHCHCl_2$ (c) H_3C — \bigcirc — \bigcirc \bigcirc — \bigcirc CN
78.	Nylon threads are made of
	(a) polyester polymer (b) polyamide polymer (c) polyethylene polymer (d) polyvinyl polymer
79.	The correct order of increasing basic nature for the bases NH ₃ , CH ₃ NH ₂ and (CH ₃) ₂ NH is
	(a) $(CH_3)_2NH < NH_3 < CH_3NH_2$ (b) $NH_3 < CH_3NH_2 < (CH_3)_2NH$
	(c) $CH_3NH_2 < (CH_3)_2NH < NH_3$ (d) $CH_3NH_2 < NH_3 < (CH_3)_2NH$
80.	Bottles containing C ₆ H ₅ l and C ₆ H ₅ CH ₂ I lost their original labels. They were labelled A and B for testing A
	and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was
	made acidic with dilute HNO ₃ and then some AgNO ₃ solution was added. Substance B gave a yellow
	precipitate. Which one of the following statements is true for this experiment?
	(a) A and $C_6H_5CH_2I$ (b) B and C_6H_5I
	(c) Addition of HNO ₃ was unnecessary (d) A was C ₆ H ₅ I
81.	The internal energy change when a system goes from state A to B is 40 kJ/mole. If the system goes from A
	to B by a reversible path and returns to state A by an irreversible path what would be the net change in internal energy?
82.	(a)> 40 kJ (b) < 40kJ (c) Zero (d) 40 kJ If at 298 K the bond energies of C-H, C-C, C = C and H-H bonds are respectively 414, 347, 615 and 435 kJ
02.	mol ⁻¹ , the value of enthalpy change for the reaction $H_2C = CH_2(g) + H_2(g) \rightarrow H_3C - CH_3(g)$ at 298 K will be
	(a) -250 kJ (b) $+125 \text{ kJ}$ (c) -125 kJ (d) $+250 \text{ kJ}$
83.	The radionucleide $\frac{234}{90}$ Th undergoes two successive β -decays followed by one α -decay. The atomic num-
03.	ber and the mass number respectively of the resulting radionucleide are
	(a) 94 and 230 (b) 90 and 230 (c) 92 and 230 (d) 92 and 234
84.	The half-life of a radioactive isotope is three hours. If the initial mass of the isotope were 256 g, the mass of
	it remaining undecayed after 18 hours would be
	(a) $8.0 \mathrm{g}$ (b) $12.0 \mathrm{g}$ (c) $16.0 \mathrm{g}$ (d) $4.0 \mathrm{g}$
85.	If liquids A and B form an ideal solution
	(a) the entropy of mixing is zero (b) the free energy of mixing is zero
86.	(c) the free energy as well as the entropy of mixing are each zero (d) the enthalpy of mixing is zero. The radius of La^{3+} (Atomic number of $La = 57$) is 1.06Å. Which one of the following given values will be
80.	closest to the radius of Lu^{3+} (Atomic number of $Lu = 71$)?
	(a) 1.40Å (b) 1.06Å (c) 0.85Å (d) 1.60Å
87.	Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in alkaline solutions but not in acidic solu-
	tions. What is the reason for it?
	(a) In acidic solutions protons coordinate with ammonia molecules forming NH ₄ ions and NH ₃ molecules
	are not available
	(b) In alkaline solutions insoluble Cu(OH) ₂ is precipitated which is soluble in excess of any alkali
	(c) Copper hydroxide is an amphoteric substance(d) In acidic solutions hydration protects copper ions.
	(8)

88.	One mole of the complex compound Co(NH ₃) ₅ Cl ₃ , gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of AgNO ₃ solution to yield two moles of AgCl (s). The structure of the complex is			
	(a) $[Co(NH_3)_3Cl_3]$. $2NH_3$ (b) $[Co(NH_3)_4Cl_2]$ Cl. NH_3 (c) $[Co(NH_3)_4Cl]Cl_2$. NH_3 (d) $[Co(NH_3)_5Cl]$ Cl.			
89	In the coordination compound, $K_4[Ni(CN)_4]$, the oxidation state of nickel is			
0)	(a) 0 (b) +1 (c) +2 (d) -1			
90.	In curing cement plasters water is sprinkled from time to time. This helps in			
(a) developing interlocking needle-like crystals of hydrated silicates				
	(b) hydrating sand and gravel mixed with cement			
	(c) converting sand into silicic acid (d) keeping it cool			
91.	Which one of the following statements is not true?			
71.	(a) pH + pOH = 14 for all aqueous solutions (b) The pH of 1×10^{-8} M HCI is 8			
	(c) 96,500 coulombs of electricity when passed through a CuSO ₄ solution deposits 1 gram equivalent of copper at the cathode			
	(d) The conjugate base of H ₂ PO ₄ ⁻ is HPO ² - ₄			
92.	On mixing a certain alkane with chlorine and irradiating it with ultravioletlight, it forms only one monochloroalkane. This alkane could be			
	(a) pentane (b) isopentane (c) neopentane (d) propane			
93.	Butene-1 may be converted to butane by reaction with			
	(a) $\operatorname{Sn} - \operatorname{HCI}$ (b) $\operatorname{Zn} - \operatorname{Hg}$ (c) $\operatorname{Pd/H}_2$ (d) $\operatorname{Zn} - \operatorname{HCI}$			
94.	What may be expected to happen when phosphine gas is mixed with chlorine gas?			
	(a) PCI ₃ and HCI are formed and the mixture warms up			
	(b) PCI ₅ and HCI are formed and the mixture cools down			
	(c) PH ₃ .Cl ₂ is formed with warming up (d) The mixture only cools down			
95.	The number of d-electrons retained in Fe^{2+} (At.no. of $Fe = 26$) ion is			
	(a) 4 (b) 5 (d) 3			
96.	Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. The explanation for it is that			
	(a) oxygen in air reacts with the emitted HCI gas to form a cloud of chlorine gas			
	(b) strong affinity of HCI gas for miosture in air results in forming of droplets of liquid solution which appears like a cloudy smoke.			
	(c) due to strong affinity for water, concentrated hydrochloric acid pulls moisture of air towards it self. This moisture forms droplets of water and hence the cloud.			
	(d) concentrated hydrochloric acid emits strongly smelling HCI gas all the time.			
97.	An ether is more volatile than an alcohol having the same molecular formula. This is due to			
	(a) alcohols having resonance structures (b) inter-molecular hydrogen bonding in ethers			
	(c) inter-molecular hydrogen bonding in alcohols (d) dipolar character of ethers			
98.	Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is that graphite			
	(a) is an allotropic form of diamond (b) has molecules of variable molecular masses like polymers			
	(c) has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds (d) is a non-crystalline substance			
99.	According to the Periodic Law of elements, the variation in properties of elements is related to their			

(a) nuclear masses (b) atomic numbers (c) nuclear neutron-proton number ratios (d) atomic masses

100.	Which one of the following statements is correct?			
	(a) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl			
	(b) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution			
	(c) On boiling a solution having K^+ , Ca^{2+} and HCO_3 ions we get a precipitate of $K_2Ca(CO_3)_2$.			
	(d) Manganese salts give a violet borax bead test in the reducing flame			2 32
101.	Glass is a			
	(a) super-cooled liquid (b)	gel (c) po	olymeric mixture	(d) micro-crystalline solid
				h
102.	The orbital angular momentum for an electron revolving in an orbit is given by $\sqrt{l(l+1)}$. $\frac{h}{2\pi}$. This momentum			
	for an s-electron will be given			
	h		<u> </u>	1 h
	(a) zero (b) $\frac{h}{2\pi}$	(c) V	$\sqrt{2} \cdot \frac{h}{2\pi}$	$(d) + \frac{\pi}{2} \cdot \frac{\pi}{2\pi}$
103.	How many unit cells are prese	ent in a cubeshape	d ideal crystal of l	NaCl of mass 1.00 g?
	[Atomic masses: Na = 23, Cl			
	(a) 5.14×10^{21} unit cells	(b) 1	28×10^{21} unit cell	s
	(c) 1.71×10^{21} unit cells	(d) 2	57×10^{21} unit cells	s •
104.	In the anion HCOO the two ca	arbon-oxygen bon	ds are found to be	of equal length. What is the reason for it?
	(a) The C = O bond is weaker than the C-O bond			
	(b) The anion HCOO has two	_		
	(c) The anion is obtained by re	emoval of a protor	from the acid mo	olecule
	(d) Electronic orbitals of carbo	•		
105.	Which one of the following ch			cal adsorption?
	(a) Adsorption increases with incresae in temperature			
	(b) Adsorption is spontaneous		oth enthalpy and o	entropy of adsorption are negative
	(d) Adsorption on solids is rev			
106.	For a cell reaction involving a 25°C. The equilibrium consta		•	e.m.f. of the cell is found to be 0.295 V at
	(a) 29.5×10^{-2} (b) 10		$\times 10^{10}$	(d) 1×10^{-10}
107	(3) 3 3 7, 3		•	which only pressure-volume work is being
107.	done, the change in Gibbs fre			• 1
				$0, (dG)_{TP} > 0$ (d) $(dS)_{VE} < 0, (dG)_{TP} < 0$
108.	.,_			. Its solubility product number will be
	(a) 4×10^{-10} (b) 1×10^{-15}	(c) 1	×10 ⁻¹⁰	(d) 4×10^{-15}
109.	What volume of hydrogen g	as, at 273 K and	1 atm, pressure v	vill be consumed in obtaining 21.6 g of
	elemental boron (atomic mass			n trichloride by hydrogen?
	(a) 67.2 L (b) 44.8 L	(c) 22	2.4 L	(d) 89.6 L
110.				ations of N ₂ O ₄ and NO ₂ at equilibrium are
	4.8×10^{-2} and 1.2×10^{-2} mol L		•	
	(a) 3×10^{-1} mol L ⁻¹ (b) 3×10^{-3}			
111.	Consider the reaction equilibrium principle, the condition favour			$H^0 = -198 \text{ kJ}$. On the basis of Le Chatelier's
	(a) increasing temperature as			temperature and increasing the pressure
	(c) any value of temperature a	•		emperature as well as pressure
				(10)

112.	Which one of th	ne following is an an	nphoteric oxide?		
	(a) Na ₂ O	(b) SO ₂	(c) B_2O_3	(d) ZnO	
113.	. A red solid is insoluble in water. However it becomes soluble if some KI is added to water. Heating the r solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on t cooler parts of the test tube. The red solid is				_
	(a) HgI,	(b) HgO		(d) $(NH_4)_2Cr_2O_7$	
114.	Standard reduct	· · · •	tials of three metals A,	$_{4}$,B&C are respectively +0.5 V	7, -3.0 V & -1.2 V. The
	(a) $A > B > C$	(c) $C > B > A$	(c) A > C > B	(d) $B > C > A$	
115.	Which one of th	e following substan	ces has the highest pro	oton affinity?	
	(a) H_2S	(b) NH ₃	(c) PH_3	(d) H_2O	
116.		queous solution of a nt of the solution wi	_	gree of ionization is 0.3. Takin	ng k, for water as 1.85
	(a) -0.360° C	(b) -0.260° C	$(c) +0.480^{\circ}C$	(d) -0.480° C	· ·
117.			ion of AgNO ₃ 9650 con the cathode will be	oulombs of charge pass thro	igh the electroplating
	(a) 10.8 g	(b) 21.6 g	(c) 108 g	(d) 1.08 g	
118.	For the redox re	eaction $Zn(s) + Cu^{2+}$	$(0.1 \mathrm{M}) \rightarrow \mathrm{Zn^{2+}(1M)} -$	+ Cu(s) taking place in a cell,	E_{cell}^0 is 1.10 volt. E_{cell}
		(RT)		
	for the cell will	be $2.303 \frac{KT}{F} = 0.05$	(c) 0.82 volt		
	(a) 1.80 volt	(b) 1.07 volt	(c) 0.82 volt	(d) 2.14 volt	
119.	In respect of the	equation $k = Ae^{-E_a}$	RT in chemical kinetic	s, which one of the following	statements is correct
	(a) A is adsorpti		(b) E _a is energy		
	(c) R is Rydberg	g's constant	(d) k is equilibri	rium constant	
120.	A reduction in a	tomic size with incr	ease in atomic numbe	r is a characteristic of elemer	nt of
	(A) d-block	(b) f-block	(c) radioactive	series (d) high atomic mag	sses
121.	The IUPAC nar	ne of CH ₃ COCH(C			
	(a) 2-methyl-3-b	outanone (b) 4-metl	ylisopropyl ketone (c	e) 3-methyl-2-butanone (d) Is	opropylmethyl ketone
122.	When $CH_2 = Cl$	H - COOH is reduce	ed with LiAlH ₄ , the co	ompound obtained will be	
	(a) $CH_2 = CH$	CH₂OH ♦	(b) CH ₃ - CH ₂	- CH ₂ OH	
	(c) CH ₃ - CH ₂	СНО	(d) $CH_3 - CH_2$	- COOH	
123.		e kinetic theory of g	gases, in an ideal gas,	between two successive coll	isions a gas molecule
	travels				
124			•	accelerated velocity (d) in	a circular path
124.		$\operatorname{mula} \operatorname{C}_{\operatorname{n}} \operatorname{H}_{\operatorname{2n}} \operatorname{O}_{\operatorname{2}} \operatorname{could}$		(-) 4!-1.1-11	(4) 4-1
125	(a) carboxylic ac	cias owing four structure	(b) diols	(c) dialdehydes	(d) deketones
123.	Among the folio	owing four structure	SITOIV.		
	CHa	O CH ₂	H _{\pi} (CH₂	
	C2H5-CH - C2H7	CH2-C - CH-C2H5	$H - C^{\circ}$ $C_2H_5 - C_5$	CH-C ₂ H ₅ T . • • • • • • • • • • • • • • • • • • •	
	(i)	(ii)	H (iii) (CH ₃ CH-C ₂ H ₅ . It is true that iv)	
			()		
		are chiral compoun		chiral compound	
	(c) only II and I	V are chiral compou	unds (d) all four are	chiral compounds	

126.	What would happen when a solution of po	otassium chromate is trea	ated with an excess of dilute nitric acid?	
	(a) $\text{Cr}_2\text{O}^{2-}_7$ and H_2O are formed	(b) CrO ² -4 is reduced to	+3 state of Cr	
	(c) CrO ² -4 is oxidized to +7 state of Cr	(d) Cr^{3+} and Cr_2O^{2-} are	formed	
127.	For making good quality mirrors, plates of over a liquid metal which does not solidify	_		
	(a) tin (b) sodium	(c) magnesium	(d) mercury	
128.	The substance not likely to contain CaCO	θ_3 is		
	(a) calcined gypsum (b) sea shells	(c) dolomite	(d) a marble statue	
129.	Complete hydrolysis of cellulose gives			
	(a) D-ribose (b) D-glucose	(c) L-glucose	(d) D-fructose	
130.	Which one of the following nitrates will le	eave behind a metal on s	trong heating?	
	(a) Copper nitrate (b) Manganese nitrate	(c) Silver nitrate	(d) Ferric nitrate	
131.	During dehydration of alcohols to alkenes	by heating with conc. H	H ₂ SO ₄ the initiation step is	
	(a) formation of carbocation	(b) elimination of water		
	(c) formation of an ester	(d) protonation of alcoh	nol molecule	
132.	The solubilities of carbonates decrease do	wn the magnesium grou	p due to a decrease in	
	(a) hydration energies of cations	(b) inter-ionic attraction		
	(c) entropy of solution formation	(d) lattice energies of so	olids	
133.	When rain is accompanied by a thundersto	orm, the collected rain w	vater will have a pH value	
	(a) slightly higher than that when the thun	derstorm is not there		
	(b) uninfluenced by occurence of thunderstorm			
	(c) which depends on the amount of dust in air			
	(d) slightly lower than that of rain water w	ithout thunderstorm		
134.	The reason for double helical structure of	DNA is operation of		
	(a) dipole-dipole interaction (b) hydrogen	bonding (c) electrostati	c attractions (d) van der Waals' forces	
135.	25 ml of a solution of barrium hydroxide litre value of 35 ml. The molarity of barrium	on titration with a 0.1 me m hydroxide solution wa	olar solution of hydrochloric acid gave a as	
	(a) 0.14 (b) 0.28	(c) 0.35	(d) 0.07	
136.	The correct relationship between free ene stant K_c is			
	(a) $-\Delta G = RT \ln K_c$ (b) $\Delta G^0 = RT \ln K_c$	(c) $-\Delta G^0 = RT In K$	Δ_c (d) $\Delta G = RT \ln K_c$	
137.	37. The rate law for a reaction between the substances A and B is given by Rate = $k[A]^n$ [B] ^m On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as			
		() 2(n m)	1	
	(a) $(m+n)$ (b) $(n-m)$	(c) $2^{(n-m)}$	(d) $\frac{1}{2^{(m+n)}}$	
138.	Ethyl isocyanide on hydrolysis in acidic m	nedium generates		
	(a) propanoic acid and ammonium salt	(b) ethanoic acid and ar	nmonium salt	
	(c) methylamine salt and ethanoic acid	(d) ethylamine salt and	methanoic acid	
139.	The enthalpy change for a reaction does n	ot depend upon		
	(a) use of different reactants for the same	product (b) the	e nature of intermediate reaction steps	
	(c) the differences in initial or final temper	ratures of involved substa	ances	
	(d) the physical states of reactants and pro-	ducts		

	(u) 10 metres Franck's constant,	II − 0.05 × 10 ° J8.	
	(d) 10 ⁻³³ metres Planck's constant,	h - 6.63 × 10-34 Ic	
	(c) 10 ⁻²⁵ metres		
	(a) 10 metres (b) 10 ⁻¹⁶ metres		
	(a) 10^{-31} metres		
150.	The de Broglie wavelength of a terapproximately	nnis ball of mass 60 g mov	ring with a velocity of 10 metres per second is
	(a) $5 \rightarrow 2$ (b) $4 \rightarrow 1$	(c) $2 \rightarrow 5$	(d) $3 \rightarrow 2$
	following inter-orbit jumps of the	_	-
149.			om the red end corresponds to which one of the
	(a) Cr (b) Mn	(c) Fe	(d) V
148.			ganese (Mn) and Iron (Fe) are respectively 23, he highest second ionization enthalpy?
1/10	(c) PF ₅ , IF ₅ The atomic numbers of vanadium	(d) CF ₄ , SF ₄	ganese (Mn) and iron (Fe) are respectively 23,
	(a) XeF_2 , CO_2	(b) BF ₃ , PCl ₃	
14/.	The pair of species having identica	-	our species is
147	(a) OH ₂ (b) SH ₂ The pair of species having identice	(c) NH ₃	(d) SO ₂
140.	Which one of the following compo		
146	(d) Saturation of water with CaCO		l angle in its molecule?
	(c) Addition of Na ₂ SO ₄ to water		
	(b) Saturation of water with CaSO	4	
	(a) Saturation of water with MgCC		
143.	Which one of the following proces (a) Saturation of water with MaCCO		A :
1/15			<u> </u>
144.	(a) N ³⁻ , F ⁻ , Na ⁺ (b) Be, Al ³⁺ , Cl ⁻		of isoelectronic species? (At. nos,: 55, Br:35) (d) Na ⁺ , Ca ²⁺ , Mg ²⁺
1/1/1	(a) NO ₂ and CO ₂ (b) NO ₂ and Which one of the following group:		
143.		-	nament dipole moments for both members?
1/12	(d) keep away the sharks Which one of the following pairs of	f molecules will have now	ganget dingle proments for both members?
	(c) prevent puncturing by under-se	a TUCKS	O . +
	· · · •		
	(b) prevent action of water and salt	_	
144.	(a) make the ship lighter	iaed to the bottom of a sing	
1/12	Several blocks of magnesium are f		n to
	(c) increase to four times of its initial(d) diminish to one-fourth of its initial		
	(b) increase to eight times of its init		
	(a) diminish to one-eighth of its init		
	the rate of reaction will (a) diminish to one eighth of its init	tial valua	
		n is of first order with resp	ect to O_2 and second order with respect to NO,
141.			is suddenly reduce to half its value by increas-
	(d) heat is more evenly distributed	in the cooking space	
	(c) cooking involves chemical char		
	(b) the higher pressure inside the co	_	erial
	(a) boiling point of water involved		
140.	A pressure cooker reduces cooking	g time for food because	