

CS/EC/EB/EI 605 CONTROL SYSTEM ENGINEERING

(1999 Admissions onwards)

Time: 3 Hours

Maximum Marks: 100

I. (a) What is meant by Transfer function of a system?

(3)

(b) Determine the Transfer function of the system given below:

(7)

(7)

(c) Determine the ratio C/R by block diagram reduction technique

(ii) What is Mayson's gain formula?
OR

(3)

II. (a) (i) Write down the equations

representing the mechanical system shown in figure.

(ii) What is force-voltage and force-current analogy?
(b) Obtain the overall transfer function of the signal flow graph shown in figure.

(Turn Over)

(5)

(10)

III.	(a)	Draw the response of a 2 nd order system to a unit step input. Derive the expression for peak overshoot, rise time, and settling time.	(12)
	(b)	Consider the unity feedback system in which $G(s) = \frac{25}{s(s+5)}$. Obtain the rise time,	
	•	peak overshoot, end settling time when subject to step input. OR	(8)
IV.	(a)	What is meant by steady state error? What are static error coefficient? How will you	(10)
	(b)	determine them? What are the effects of derivative and integral control in a control system?	(3)
	(c)	Explain Routh Hurwitz criterion by considering a suitable example.	(7)
V.	(a)	A certain unity feed back control system in given by $G(s) = \frac{k}{s(1+s)(1+0.1s)}$.	
		Draw the Bode plot. Determine the value of k so that gain Margin = 10db	
		phase margin = 50°	(12)
	(b)	Explain Nyquist Criterion.	(8)
		OR	
VI.	(a)	What is meant by frequency response? Explain the performance characteristics in	44.00
		frequency domain.	(10)
	(b)	What are constant M and N circles? Explain Nichol's chart.	(10)
VII.	(a)	Explain the different steps in drawing root locus.	(10)
	(b)	A unity feedback system has $G(s) = \frac{k}{s(s+4)(s^2+2s+5)}$	
		Draw the root locus.	(10)
VIII.	(a)	What are compensating networks?	(8)
,	(b)	Explain the design procedure for a cascade lead compensation.	(12)
IX.	(a)	Define state variables, state and stace space of a system.	(4)
	(b)	Determine the state mode of a system shown in fig.	
		n L	
		m any	
		Oei — c cp	•
			(10)
		WD	160
	(c)	What is a servomotor? Mention some of its applications. OR	(6)
X.	(a)	What is a state Transition Matrix? Explain its properties.	(10)
	(b)	Solve the state equation	
		$\begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$ $\begin{bmatrix} 0 \end{bmatrix}$	
		$X = \begin{bmatrix} 0 & 1 & 0 & X; & X(0) = \end{bmatrix} 1$	(10)
		1 0 3 0	

<u>4</u>.