

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 MICROELECTRONICS & OPTOELECTRONIC DEVICES SEMESTER - 4

Time . 2 House	l '		*	•	Full Marks: 70
Time: 3 Hours					[rull maiks://

GROUP - A

			(Multiple Choice	Type (Questions)	
1.	Cho	ose tl	ne correct alternatives for the fo	llowinį	g :	$10 \times 1 = 10$
	i)	Bul	k Micromachining makes Micro	mecha	nical devices by etching deep	ply into
	•	a)	Germanium Wafer	b)	Carbon Wafer	
		c)	Silicon Wafer	d)	Gallium Wafer.	
	ii)	In I	P-I-N Diode the I part refers to			
		a)	extrinsic substrate	b)	intrinsic substrate	
		c)	intrinsic semiconductor	d)	extrinsic semiconductor.	
	iii)	Elec	ctron Affinity depends on			
		a)	semiconductor material			
		b)	doping of the semiconductor			
		c)	applied potential			
		d)	none of these.	n e		
	iv)	In p	hotodiode, the light energy			
		a)	is converted to electrical ener	gy		
		b)	is converted to mechanical en	ergy		
	.*	c)	is converted to sound energy			
		d)	is not converted into any other	r form		

24507-(V)-B

	D TECH	ECE NEED	/CPM_A	ARC-ARK INT
~	D. IECH	ECE-NEW)) OFINITE	/EC-405/07

a)	a closed switch	b)	an open switch
c)	an amplifier	d)	a pure resistor.

- cut-off regions

a)

saturation region b)

active region c)

- both (a) & (b) . d)
- If τ_{ps} and τ_{pb} denote the excess hole lifetimes at the surface and in the bulk material respectively, then
 - $\tau_{ps} > \tau_{pb}$

 $\tau_{ps} = 2\tau_{pb}$ c)

- Hall voltage is proportional to viii)
 - velocity
 - magnetic field b)
 - both (a) & (b) and parallel to the velocity c)
 - both (a) & (b) and perpendicular to the magnetic field.
- In Schottky barrier diode, the current mechanism is due to ix)
 - minority carrier
- majority carrier b)
- both of (a) and (b) c)
- d) none of these.
- Charge coupled devices are used to
 - a) store the charge
- transfer the charge b)

both (a) & (b) c)

none of these. d)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Derive the one-dimensional continuity equation for minority carriers in generation-recombination process, under low injection condition. G_n , G_p , R_n and R_p are generation and recombination rates for electron / hole.
- 3. What is population inversion in Laser? What is external quantum efficiency in a semiconductor Laser? What is the optical feedback & Laser oscillation by which the amplified coherent emission is obtained? 1 + 2 + 2
- 4. An n-type semiconductor at thermal equilibrium (T=300 K) has a linear variation in doping concentration given by N_d (x) = $10^{16} 10^{19}$ x, $0 \le x \le 1$ μ m.

Determine induced electric field. (Volt equivalent temperature at room temperature = 0.02V)

5. Discuss the principle of operation of vertical power BJT.

5

With energy band diagram describe Schottky junction barrier formation. Describe its operation under external bias.

GROUP - C

(Long Answer Type Questions)

Answer any three questions of the following.

 $3 \times 15 = 45$

- 7. a) What is SCR? Point out its major uses.
 - b) By using two-transistor analogy, briefly describe the basic operation of twoterminal SCR.
 - c) Is it possible to observe the purpose of SCR by connecting two separate transistors? Explain.
 - d) How does the presence of third terminal control the I-V response of SCR? Explain with system diagram. 2 + 6 + 2 + 5

- 8. a) Sketch the ideal energy band diagram of a metal-semiconductor junction in which $\Phi_m < \Phi_s$. Explain why this is an Ohmic contact.
 - b) Discuss how 2D-electron gas is formed in semiconductor heterojuction.
 - c) The Schottky barrier height of a Si Schottky junction is $\Phi_{BN} = 0.59$ V, the effective Richardson constant is $A^* = 111 \text{ A/K}^2$ -cm² and the cross-sectional area is $a = 10^{-4}$ cm².

For T = 100 K, calculate

- i) Ideal reverse saturation current
- ii) The diode current for V (applied) = 0.30 V.

(5+2)+3+5

- 9. a) Illustrate the basic process flow in micromachining? What do you mean by optical lithography?
 - b) What do you mean by plasma etching?
 - c) Explain one non-lithographic micro-fabrication technology.

(6+3)+2+4

- 10. a) What is the advantage of optical fibre over the copper wire system?
 - b) What is the difference between step index and graded index fibres?
 - c) Distinguish between non-radiative & radiative recombination processes in a semiconductor. Express the internal quantum efficiency in terms of the life times of the processes.
 - d) A silica optical fibre has a core refractive index of 1.5 and the cladding refractive index of 1.450. Calculate
 - i) the critical angle for the core cladding interface.
 - ii) the acceptance angle in air for the fibre.
 - iii) the Numerical aperture (NA) of the fibre.

 $3+1+(2+3)+(3\times2)$

11. Write short notes on any three of the following:

 3×5

- a) Solar cell
- b) Semiconductor laser
- c) Insulated bipolar junction transistor
- d) P-I-N photodiode
- e) O.E.I.C.