

DIPLOMA IN NAUTICAL SCIENCE

Term-End Examination

December, 2006

BNA-013 : ELECTRICITY AND ELECTRONICS

Time: 2 hours

Maximum Marks: 70

Note :

- (i) Non-programmable scientific calculator is allowed.
- (ii) Attempt three questions from each section.
- (iii) Questions no. 1 and 5 are compulsory.

SECTION A (Electricity)

Note: Attempt any **three** questions from this section. Question no. 1 is **compulsory**.

- (a) (i) Obtain the expressions of current and phase angle, and between current and voltage of LCR series circuit using vector diagrams.
 - (ii) Explain "electrical resonance" in LCR series circuit and give the expression of resonant frequency.
 - (b) A 220 V, 50 Hz supply is applied to a choke coil of negligible resistance and the circuit current is measured to be 2.5 amp. Find the inductance of the coil and the active power dissipated.

5

5

5

2.	(a)	Define the following terms :	5
		(i) Henry (ii) Farad	
		(iii) Resistivity	
		(iv) RMS value of a.c. voltage	
		(v) Reactive power in a.c. circuit	
	(b)	Two cells of emf 3 V and 4 V having internal	
		resistances 1 Ω and 2 Ω respectively are connected	
		in parallel to an external resistance of $15\ \Omega$. Calculate the current in each branch.	5
3.	(a)	How do you convert a given galvanometer into an	
		ammeter and a voltmeter? Explain with necessary	
		circuit diagrams.	5
	(b)	A 4 μF capacitor is connected in series with parallel combination of two capacitors 5 μF and 2 μF .	
	w ta	(i) Determine the capacitance of the combination.	i i i i
		(ii) If a potential difference of 12 V is maintained	
	4 x ,	across the combination, determine the charge	. \$
	4 3 - 2	on $4 \mu F$ capacitor and energy stored in the	
		5 μF capacitor.	5
4.	Writ	te short notes on any two of the following:	10
	(a)	Transformer	
		rent agent in the Carlos and Agent and a large time of the Armine to	
	(b)	Variation of resistance with temperature	
	(c)	Navigation lights	

SECTION B (Electronics)

- **Note:** Attempt any **three** questions from this section. Question no. 5 is **compulsory**.
- 5. (a) Explain input and output characteristics of a transistor in common base configuration. 10
 - (b) A transistor in common emitter mode has collector supply voltage of 10 V and the voltage drop across the $1.5~\rm k\Omega$ load resistance is $0.75~\rm V$. Determine the collector to emitter voltage and the base current, if α is 0.93.
- 6. (a) Explain construction and working of a Cathode Ray
 Tube (CRT) with necessary diagram.

 5
 - (b) An oxide-coated thermionic emitter has a surface area of $0.25~{\rm cm}^2$. If the operating temperature is 1400° K, find the emission current.

(Given : $A = 65 \times 10^4 \text{ amp/m}^2/\text{°K}^2$ and work function = 3.15 eV)

- 7. (a) What is demodulation? Explain the function of an AM diode detector with necessary circuit diagram. 5
 - (b) A sinusoidal carrier voltage of frequency 1200 kHz is amplitude modulated by a sinusoidal voltage of frequency 10 kHz resulting in maximum and minimum modulated carrier amplitudes of 90 V and 60 V respectively. Calculate
 - (i) Frequency of lower and upper side-bands
 - (ii) Modulation index and amplitude of each side-band

5

5

5

8.	(a)	Explain the functioning of a half wave rectifier circuit	
		and derive the expression for its efficiency.	5

(b) A half wave rectifier in a life board battery charger circuit supplies 30 V d.c. to a load of 900 Ω . The forward resistance of the diode is 5 Ω . Calculate the rms value of alternating voltage required.