Let UsC

Fifth Edition

Yashavant P. Kanetkar

Dedicated to baba
Who couldn’t be here to see this day...

About the Author

Destiny drew Yashavant Kanetkar towards computers when the IT
industry was just making a beginning in India. Having completed
his education from VJTI Mumbai and IIT Kanpur in Mechanical
Engineering he started his training company in Nagpur.

Yashavant has a passion for writing and is an author of several
books in C, C++, VC++, C#, .NET, DirectX and COM
programming. He is a much sought after speaker on various
technology subjects and is a regular columnist for Express
Computers and Developer 2.0. His current affiliations include
being a Director of KICIT, a training company and DCube
Software Technologies, a software development company. In
recognition to his contribution Microsoft awarded him the
prestigious “Best .NET Technical Contributor” award recently.
He can be reached at kanetkar@kicit.com.

Acknowledgments

It has been a journey of almost a decade from the stage the book
idea of “Let Us C” was conceived up to the release of this Fifth
Edition. During this journey | have met so many students,
developers, professors, publishers and authors who expressed their
opinions about Let Us C. They have been the main motivators in
my effort to continuously improve this book.

In particular I am indebted to Manish Jain who had a faith in this
book idea, believed in my writing ability, whispered the words of
encouragement and made helpful suggestions from time to time.

The five editions of this book saw several changes and facelifts.
During this course people like Ajay Joshi, Amol Tambat, Ajay
Daga, Nandita Shastri, Mrunal Khandekar and Rahul Bedge
helped in writing programs, spotting bugs, drawing figures and
preparing index. | trust that with their collective acumen all the
programs would run correctly in all situations.

Anup Das, my colleague has a lot of influence on this Fifth
Edition. He helped my clarify my thoughts and pointing me in the
direction of Windows and Linux. He sincerely wanted this edition
to offer “C, in today’s perspective”. | am hopeful that his dream
has been realized.

I thank Seema, my wife, for her friendship and for her
contributions in everything that | do in IT in ways more than she
could ever guess. Though she is a Gynecologist by profession she
has the uncanny ability to come up with suggestions that make me
feel “Oh, why didn’t it occur to me”.

And finally my heartfelt gratitude to the countless students who
made me look into every nook and cranny of C. | would forever
remain indebted to them..

Preface to the Fifth Edition

It is mid 2004. World has left behind the DOTCOM bust, 9/11
tragedy, the economic downturn, etc. and moved on. Countless
Indians have relentlessly worked for close to two decades to
successfully establish “India” as a software brand. At times | take
secret pleasure in seeing that a book that | have been part of, has
contributed in its own little way in shaping so many budding
careers that have made the “India” brand acceptable.

Computing and the way people use C for doing it keeps changing
as years go by. So overwhelming has been the response to all the
previous editions of “Let Us C” that | have now decided that each
year | would come up with a new edition of it so that | can keep
the readers abreast with the way C is being used at that point in
time.

There are two phases in every C programmer’s life. In the first
phase he is a learner trying to understand the language elements
and their nuances. At this stage he wants a simple learning
environment that helps him to master the language. In my opinion,
even today there isn’t any learning environment that can beat
Turbo C/C++ for simplicity. Hence the first fifteen chapters are
written keeping this environment in mind, though a majority of
these programs in these chapters would work with any C compiler.

Armed with the knowledge of language elements the C
programmer enters the second phase. Here he wishes to use all that
he has learnt to create programs that match the ability of programs
that he see in today’s world. I am pointing towards programs in
Windows and Linux world. Chapters 16 to 21 are devoted to this. |
would like to your attention the fact that if you want to program
Windows or Linux you need to have a very good grasp over the
programming model used by each of these OS. Windows
messaging architecture and Linux signaling mechanism are the
cases in point. Once you understand these thoroughly rest is just a

Vi

matter of time. Chapters 16 to 21 have been written with this
motive.

In Linux programming the basic hurdle is in choosing the Linux
distribution, compiler, editor, shell, libraries, etc. To get a head-
start you can follow the choices that | found most reasonable and
simple. They have been mentioned in Chapter 20 and Appendix H.
Once you are comfortable you can explore other choices.

In fourth edition of Let Us C there were chapters on ‘Disk Basics’,
‘VDU Basics’, ‘Graphics’, *Mouse Programming’, ‘C and
Assembly’. Though I used to like these chapters a lot | had to take
a decision to drop them since most of them were DOS-centric and
would not be so useful in modern-day programming. Modern
counterparts of all of these have been covered in Chapters 16 to
21. However, if you still need the chapters from previous edition
they are available at www.kicit.com/books/letusc/fourthedition.

Also, all the programs present in the book are available in source
code form at www.Kkicit.com/books/letusc/sourcecode. You are
free to download them, improve them, change them, do whatever
with them. If you wish to get solutions for the Exercises in the
book they are available in another book titled ‘Let Us C
Solutions’.

‘Let Us C’ is as much your book as it is mine. So if you feel that |
could have done certain job better than what | have, or you have
any suggestions about what you would like to see in the next
edition, please drop a line to letuscsuggestions@kicit.com.

All the best and happy programming!

vii

Contents

1. Getting Started

What is C
Getting Started with C

The

The C Character Set

Constants, Variables and Keywords

Types of C Constants

Rules for Constructing Integer Constants
Rules for Constructing Real Constants
Rules for Constructing Character Constants
Types of C Variables

Rules for Constructing Variable Names

C Keywords

First C Program

Compilation and Execution
Receiving Input
C Instructions

Type Declaration Instruction
Arithmetic Instruction

Integer and Float Conversions
Type Conversion in Assignments
Hierarchy of Operations
Associativity of Operators

Control Instructions in C
Summary
Exercise

2. The Decision Control Structure

Decisions! Decisions!

The

The

if Statement

The Real Thing

Multiple Statements within if
if-else Statement

viii

49

50
51
55
56
58

Nested if-elses
Forms of if
Use of Logical Operators
The else if Clause
The ! Operator
Hierarchy of Operators Revisited
A Word of Caution
The Conditional Operators
Summary
Exercise

3. The Loop Control Structure

Loops
The while Loop
Tips and Traps
More Operators
The for Loop
Nesting of Loops

Multiple Initialisations in the for Loop

The Odd Loop

The break Statement
The continue Statement
The do-while Loop
Summary

Exercise

4. The Case Control Structure

Decisions Using switch

The Tips and Traps
switch Versus if-else Ladder
The goto Keyword
Summary
Exercise

61
62
64
66
72
73
73
76
77
78

97

98

99
101
105
107
114
115
116
118
120
121
124
124

135

136
140
144
145
148
149

5. Functions & Pointers 157

What is a Function 158
Why Use Functions 165
Passing Values between Functions 166
Scope Rule of Functions 171
Calling Convention 172
One Dicey Issue 173
Advanced Features of Functions 174
Function Declaration and Prototypes 175

Call by Value and Call by Reference 178

An Introduction to Pointers 178
Pointer Notation 179
Back to Function Calls 186
Conclusions 189
Recursion 189
Recursion and Stack 194
Adding Functions to the Library 197
Summary 201
Exercise 201
6. Data Types Revisited 213
Integers, long and short 214
Integers, signed and unsigned 216
Chars, signed and unsigned 217
Floats and Doubles 219
A Few More Issues... 221
Storage Classes in C 223
Automatic Storage Class 224
Register Storage Class 226
Static Storage Class 227
External Storage Class 230
Which to Use When 233
Summary 234
Exercise 235

7. The C Preprocessor 241

Features of C Preprocessor 242
Macro Expansion 244
Macros with Arguments 248
Macros versus Functions 252

File Inclusion 253
Conditional Compilation 255
#if and #elif Directives 258
Miscellaneous Directives 260
#undef Directive 260
#pragma Directive 261
Summary 263
Exercise 264
8. Arrays 269
What are Arrays 270
A Simple Program Using Array 272
More on Arrays 275
Array Initialization 275
Bounds Checking 276
Passing Array Elements to a Function 277
Pointers and Arrays 279
Passing an Entire Array to a Function 286

The Real Thing 287
Two Dimensional Arrays 289
Initializing a 2-Dimensional Array 290
Memory Map of a 2-Dimensional Array 291
Pointers and 2-Dimensional Arrays 292
Pointer to an Array 295
Passing 2-D array to a Function 297
Array of Pointers 300
Three Dimensional Array 302
Summary 304

Xi

Exercise

9. Puppetting On Strings

What are Strings
More about Strings
Pointers and Strings
Standard Library String Functions
strlen()
strepy()
strcat()
stremp()
Two-Dimensional Array of Characters
Array of Pointers to Strings
Limitation of Array of Pointers to Strings
Solution
Summary
Exercise

10. Structures

Why Use Structures
Declaring a Structure
Accessing Structure Elements
How Structure Elements are Stored
Aurray of Structures
Additional Features of Structures
Uses of Structures
Summary
Exercise

11. Console Input/Output
Types of 1/0

Console 1/0 Functions
Formatted Console I/0 Functions

xii

304

327

328
329
334
335
337
339
342
343
344
347
351
352
353
354

363

364
367
370
370
371
374
383
384
384

393
394

395
396

sprintf() and sscanf() Functions 404

Unformatted Console I/O Functions 405
Summary 409
Exercise 409

12. File Input/Output 415
Data Organization 416
File Operations 417

Opening a File 418

Reading from a File 420

Trouble in Opening a File 421

Closing the File 422
Counting Characters, Tabs, Spaces, ... 422
A File-copy Program 424

Writing to a File 425
File Opening Modes 426
String (line) 1/0O in Files 427

The Awkward Newline 430
Record 1/0O in Files 430
Text Files and Binary Files 434
Record 1/0O Revisited 437
Database Management 441
Low Level Disk I1/0 447

A Low Level File-copy Program 448
1/0 Under Windows 453
Summary 453
Exercise 454

13. More Issues In Input/Output 465
Using argc and argv 466
Detecting Errors in Reading/Writing 470
Standard 1/O Devices 472
1/0 Redirection 473

Redirecting the Output 474

Xiii

Redirecting the Input 476

Both Ways at Once 477
Summary 478
Exercise 478

14. Operations On Bits 481
Bitwise Operators 482

One’s Complement Operator 484

Right Shift Operator 486

Left Shift Operator 488

Bitwise AND Operator 493

Bitwise OR Operator 498

Bitwise XOR Operator 499
The showbits() Function 500
Summary 501
Exercise 501

15. Miscellaneous Features 505
Enumerated Data Type 506

Uses of Enumerated Data Type 507
Renaming Data Types with typedef 510
Typecasting 511
Bit Fields 513
Pointers to Functions 515
Functions Returning Pointers 518
Functions with Variable Number of Arguments 520
Unions 524

Union of Structures 530
Summary 531
Exercise 531

Xiv

16. C Under Windows 535

Which Windows... 536
Integers 537
The Use of typedef 537
Pointers in the 32-bit World 539
Memory Management 540
Device Access 543
DOS Programming Model 543
Windows Programming Model 547
Event Driven Model 551
Windows Programming, a Closer Look 552
The First Windows Program 554
Hungarian Notation 558
Summary 558
Exercise 559
17. Windows Programming 561
The Role of a Message Box 562
Here Comes the window... 563
More Windows 566
A Real-World Window 567
Creation and Displaying of Window 569
Interaction with Window 570
Reacting to Messages 572
Program Instances 575
Summary 575
Exercise 576
18. Graphics Under Windows 579
Graphics as of Now 580
Device Independent Drawing 580

XV

19.

Hello Windows
Drawing Shapes
Types of Pens
Types of Brushes

Code and Resources
Freehand Drawing, the Paintbrush Style

Capturing the Mouse
Device Context, a Closer Look
Displaying a Bitmap
Animation at Work

WM_CREATE and OnCreate()

WM_TIMER and OnTimer()

A Few More Points...
Windows, the Endless World...
Summary
Exercise

nteraction With Hardware

Hardware Interaction
Hardware Interaction, DOS Perspective
Hardware Interaction, Windows Perspective
Communication with Storage Devices
The ReadSector() Function
Accessing Other Storage Devices
Communication with Keyboard
Dynamic Linking
Windows Hooks
Caps Locked, Permanently
Did You Press It TTwwiiccee......
Mangling Keys
KeyLogger
Where is This Leading
Summary
Exercise

XVi

582
586
590
592
596
596
600
601
603
607
611
611
612
613
614
615

617

618
619
623
626
631
633
634
635
635
637
643
644
645
646
647
647

20. C Under Linux

What is Linux

C Programming Under Linux
The “Hello Linux’ Program
Processes

Parent and Child Processes
More Processes

Zombies and Orphans

One Interesting Fact
Summary

Exercise

21. More Linux Programming

Communication using Signals
Handling Multiple Signals
Registering a Common Handler
Blocking Signals

Event Driven Programming
Where Do You Go From Here
Summary

Exercise

Appendix A — Precedence Table
Appendix B — Standard Library Functions
Appendix C — Chasing the Bugs

Appendix D — Hexadecimal Numbering
Appendix E — ASCII Chart

Appendix F — Helper.h File

Appendix G — Boot Parameters

Appendix H — Linux Installation

Index

XVii

649

650
651
652
653
655
659
660
663
664
664

667

668
671
673
675
678
684
684
685

687
691
701
713
719
725
729
735
739

1 Getting Started

e Whatis C

o Getting Started with C
The C Character Set
Constants, Variables and Keywords
Types of C Constants
Rules for Constructing Integer Constants
Rules for Constructing Real Constants
Rules for Constructing Character Constants
Types of C Variables
Rules for Constructing Variable Names
C Keywords

The First C Program

Compilation and Execution

Receiving Input

C Instructions
Type Declaration Instruction
Arithmetic Instruction
Integer and Float Conversions
Hierarchy of Operations
Associativity Of Operators

Control Instruction in C

Summary

Exercise

2 Let Us C

efore we can begin to write serious programs in C, it would

be interesting to find out what really is C, how it came into

existence and how does it compare with other computer
languages. In this chapter we would briefly outline these issues.

Four important aspects of any language are the way it stores data,
the way it operates upon this data, how it accomplishes input and
output and how it lets you control the sequence of execution of
instructions in a program. We would discuss the first three of these
building blocks in this chapter.

What is C

C is a programming language developed at AT & T’s Bell
Laboratories of USA in 1972. It was designed and written by a
man named Dennis Ritchie. In the late seventies C began to
replace the more familiar languages of that time like PL/I,
ALGOL, etc. No one pushed C. It wasn’t made the ‘official’ Bell
Labs language. Thus, without any advertisement C’s reputation
spread and its pool of users grew. Ritchie seems to have been
rather surprised that so many programmers preferred C to older
languages like FORTRAN or PL/I, or the newer ones like Pascal
and APL. But, that's what happened.

Possibly why C seems so popular is because it is reliable, simple
and easy to use. Moreover, in an industry where newer languages,
tools and technologies emerge and vanish day in and day out, a
language that has survived for more than 3 decades has to be really
good.

An opinion that is often heard today is — “C has been already
superceded by languages like C++, C# and Java, so why bother to

Chapter 1: Getting Started 3

learn C today”. | seriously beg to differ with this opinion. There
are several reasons for this:

(a)

(b)

(©)

(d)

| believe that nobody can learn C++ or Java directly. This is
because while learning these languages you have things like
classes, objects, inheritance, polymorphism, templates,
exception handling, references, etc. do deal with apart from
knowing the actual language elements. Learning these
complicated concepts when you are not even comfortable
with the basic language elements is like putting the cart before
the horse. Hence one should first learn all the language
elements very thoroughly using C language before migrating
to C++, C# or Java. Though this two step learning process
may take more time, but at the end of it you will definitely
find it worth the trouble.

C++, C# or Java make use of a principle called Object
Oriented Programming (OOP) to organize the program. This
organizing principle has lots of advantages to offer. But even
while using this organizing principle you would still need a
good hold over the language elements of C and the basic
programming skills.

Though many C++ and Java based programming tools and
frameworks have evolved over the years the importance of C
is still unchallenged because knowingly or unknowingly while
using these frameworks and tools you would be still required
to use the core C language elements—another good reason
why one should learn C before C++, C# or Java.

Major parts of popular operating systems like Windows,
UNIX, Linux is still written in C. This is because even today
when it comes to performance (speed of execution) nothing
beats C. Moreover, if one is to extend the operating system to
work with new devices one needs to write device driver
programs. These programs are exclusively written in C.

4 Let UsC

(e) Mobile devices like cellular phones and palmtops are
becoming increasingly popular. Also, common consumer
devices like microwave oven, washing machines and digital
cameras are getting smarter by the day. This smartness comes
from a microprocessor, an operating system and a program
embedded in this devices. These programs not only have to
run fast but also have to work in limited amount of memory.
No wonder that such programs are written in C. With these
constraints on time and space, C is the language of choice
while building such operating systems and programs.

() You must have seen several professional 3D computer games
where the user navigates some object, like say a spaceship and
fires bullets at the invaders. The essence of all such games is
speed. Needless to say, such games won't become popular if
they takes a long time to move the spaceship or to fire a
bullet. To match the expectations of the player the game has
to react fast to the user inputs. This is where C language
scores over other languages. Many popular gaming
frameworks have been built using C language.

(g) At times one is required to very closely interact with the
hardware devices. Since C provides several language
elements that make this interaction feasible without
compromising the performance it is the preferred choice of
the programmer.

I hope that these are very convincing reasons why one should
adopt C as the first and the very important step in your quest for
learning programming languages.

Getting Started with C

Communicating with a computer involves speaking the language
the computer understands, which immediately rules out English as
the language of communication with computer. However, there is

Chapter 1: Getting Started 5

a close analogy between learning English language and learning C
language. The classical method of learning English is to first learn
the alphabets used in the language, then learn to combine these
alphabets to form words, which in turn are combined to form
sentences and sentences are combined to form paragraphs.
Learning C is similar and easier. Instead of straight-away learning
how to write programs, we must first know what alphabets,
numbers and special symbols are used in C, then how using them
constants, variables and keywords are constructed, and finally how
are these combined to form an instruction. A group of instructions
would be combined later on to form a program. This is illustrated
in the Figure 1.1.

Steps in learning English language:

d

Alphabets Words > Sentences > Paragraphs

Steps in learning C:

Alphabets

Digits \C/0n'5t§|nts

Special sy- ariables nstructi

mbols Keywords nstructions Program
Figure 1.1

The C Character Set

A character denotes any alphabet, digit or special symbol used to
represent information. Figure 1.2 shows the valid alphabets,
numbers and special symbols allowed in C.

6 Let Us C

Alphabets A B, ... Y, Z
a,b, ... Y, Z
Digits 0,1,23,4,56,7,8,9
Special symbols ~T@# N&*()_-+=|\{}
[1:; "'<>,.?/
Figure 1.2

Constants, Variables and Keywords

The alphabets, numbers and special symbols when properly
combined form constants, variables and keywords. Let us see what
are ‘constants’ and ‘variables’ in C. A constant is an entity that
doesn’t change whereas a variable is an entity that may change.

In any program we typically do lots of calculations. The results of
these calculations are stored in computers memory. Like human
memory the computer memory also consists of millions of cells.
The calculated values are stored in these memory cells. To make
the retrieval and usage of these values easy these memory cells
(also called memory locations) are given names. Since the value
stored in each location may change the names given to these
locations are called variable names. Consider the following
example.

Here 3 is stored in a memory location and a name X is given to it.
Then we are assigning a new value 5 to the same memory location
X. This would overwrite the earlier value 3, since a memory
location can hold only one value at a time. This is shown in Figure
1.3.

Chapter 1: Getting Started 7

Figure 1.3

Since the location whose name is x can hold different values at
different times x is known as a variable. As against this, 3 or 5 do
not change, hence are known as constants.

Types of C Constants

C constants can be divided into two major categories:

(@) Primary Constants
(b) Secondary Constants

These constants are further categorized as shown in Figure 1.4.

8 Let Us C

C Constants
' !

Primary Constants I Secondary Constants I
Integer Constant Array
Real Constant Pointer
Character Constant Structure

Union

Enum. etc.

Figure 1.4

At this stage we would restrict our discussion to only Primary
Constants, namely, Integer, Real and Character constants. Let us
see the details of each of these constants. For constructing these
different types of constants certain rules have been laid down.
These rules are as under:

Rules for Constructing Integer Constants

(@ An integer constant must have at least one digit.

(b) It must not have a decimal point.

(c) It can be either positive or negative.

(d) If no sign precedes an integer constant it is assumed to be
positive.

(e) No commas or blanks are allowed within an integer constant.

(f) The allowable range for integer constants is -32768 to 32767.

Truly speaking the range of an Integer constant depends upon the
compiler. For a 16-bit compiler like Turbo C or Turbo C++ the

Chapter 1: Getting Started 9

range is —32768 to 32767. For a 32-bit compiler the range would
be even greater. Question like what exactly do you mean by a 16-
bit or a 32-bit compiler, what range of an Integer constant has to
do with the type of compiler and such questions are discussed in
detail in Chapter 16. Till that time it would be assumed that we are
working with a 16-bit compiler.

Ex.. 426
+782
-8000
-7605

Rules for Constructing Real Constants

Real constants are often called Floating Point constants. The real
constants could be written in two forms—Fractional form and
Exponential form.

Following rules must be observed while constructing real
constants expressed in fractional form:

(@) A real constant must have at least one digit.

(b) It must have a decimal point.

(c) It could be either positive or negative.

(d) Default sign is positive.

(e) No commas or blanks are allowed within a real constant.

Ex.: +325.34
426.0
-32.76
-48.5792

The exponential form of representation of real constants is usually
used if the value of the constant is either too small or too large. It
however doesn’t restrict us in any way from using exponential
form of representation for other real constants.

10 Let Us C

In exponential form of representation, the real constant is
represented in two parts. The part appearing before ‘e’ is called
mantissa, whereas the part following ‘e’ is called exponent.

Following rules must be observed while constructing real
constants expressed in exponential form:

(@ The mantissa part and the exponential part should be
separated by a letter e.

(b) The mantissa part may have a positive or negative sign.

(c) Default sign of mantissa part is positive.

(d) The exponent must have at least one digit, which must be a
positive or negative integer. Default sign is positive.

(e) Range of real constants expressed in exponential form is

-3.4e38 t0 3.4e38.
Ex.. +3.2e-5
4.1e8
-0.2e+3
-3.2e-5

Rules for Constructing Character Constants

(@) A character constant is a single alphabet, a single digit or a
single special symbol enclosed within single inverted
commas. Both the inverted commas should point to the left.
For example, *A’ is a valid character constant whereas ‘A’ is
not.

(b) The maximum length of a character constant can be 1
character.

Ex.. ‘A’
I|I
l5l

Chapter 1: Getting Started 11

Types of C Variables

As we saw earlier, an entity that may vary during program
execution is called a variable. Variable names are names given to
locations in memory. These locations can contain integer, real or
character constants. In any language, the types of variables that it
can support depend on the types of constants that it can handle.
This is because a particular type of variable can hold only the same
type of constant. For example, an integer variable can hold only an
integer constant, a real variable can hold only a real constant and a
character variable can hold only a character constant.

The rules for constructing different types of constants are different.
However, for constructing variable names of all types the same set
of rules apply. These rules are given below.

Rules for Constructing Variable Names

(@ A variable name is any combination of 1 to 31 alphabets,
digits or underscores. Some compilers allow variable names
whose length could be up to 247 characters. Still, it would be
safer to stick to the rule of 31 characters. Do not create
unnecessarily long variable names as it adds to your typing
effort.

(b) The first character in the variable name must be an alphabet or
underscore.

(c) No commas or blanks are allowed within a variable name.

(d) No special symbol other than an underscore (as in gross_sal)
can be used in a variable name.

Ex.. siint
m_hra
pop_e_89

These rules remain same for all the types of primary and secondary
variables. Naturally, the question follows... how is C able to
differentiate between these variables? This is a rather simple

12 Let Us C

matter. C compiler is able to distinguish between the variable
names by making it compulsory for you to declare the type of any
variable name that you wish to use in a program. This type
declaration is done at the beginning of the program. Following are
the examples of type declaration statements:

Ex.. int si,m_hra;
float bassal ;
char code;

Since, the maximum allowable length of a variable name is 31
characters, an enormous number of variable names can be
constructed using the above-mentioned rules. It is a good practice
to exploit this enormous choice in naming variables by using
meaningful variable names.

Thus, if we want to calculate simple interest, it is always advisable
to construct meaningful variable names like prin, roi, noy to
represent Principle, Rate of interest and Number of years rather
than using the variables a, b, c.

C Keywords

Keywords are the words whose meaning has already been
explained to the C compiler (or in a broad sense to the computer).
The keywords cannot be used as variable names because if we do
SO we are trying to assign a new meaning to the keyword, which is
not allowed by the computer. Some C compilers allow you to
construct variable names that exactly resemble the keywords.
However, it would be safer not to mix up the variable names and
the keywords. The keywords are also called ‘Reserved words’.

There are only 32 keywords available in C. Figure 1.5 gives a list
of these keywords for your ready reference. A detailed discussion
of each of these keywords would be taken up in later chapters
wherever their use is relevant.

Chapter 1: Getting Started 13

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while
Figure 1.5

Note that compiler vendors (like Microsoft, Borland, etc.) provide
their own keywords apart from the ones mentioned above. These
include extended keywords like near, far, asm, etc. Though it has
been suggested by the ANSI committee that every such compiler
specific keyword should be preceded by two underscores (as in
__asm), not every vendor follows this rule.

The First C Program

Armed with the knowledge about the types of variables, constants
& keywords the next logical step is to combine them to form
instructions. However, instead of this, we would write our first C
program now. Once we have done that we would see in detail the
instructions that it made use of.

Before we begin with our first C program do remember the
following rules that are applicable to all C programs:

(@) Each instruction in a C program is written as a separate
statement. Therefore a complete C program would comprise
of a series of statements.

14

Let UsC

(b)

(©)

(d)
(€)

(f)

The statements in a program must appear in the same order in
which we wish them to be executed; unless of course the logic
of the problem demands a deliberate ‘jump’ or transfer of
control to a statement, which is out of sequence.

Blank spaces may be inserted between two words to improve
the readability of the statement. However, no blank spaces are
allowed within a variable, constant or keyword.

All statements are entered in small case letters.
C has no specific rules for the position at which a statement is
to be written. That’s why it is often called a free-form

language.

Every C statement must end with a ;. Thus ; acts as a
statement terminator.

Let us now write down our first C program. It would simply
calculate simple interest for a set of values representing principle,
number of years and rate of interest.

[* Calculation of simple interest */
* Author gekay Date: 25/05/2004 */

main()

L
int p,n;
float r,si;
p=1000;
n=3;
r=85;

[* formula for simple interest */
si=p*n*r/100;

printf ("%f" , si) ;

Chapter 1: Getting Started 15

Now a few useful tips about the program...

— Comment about the program should be enclosed within /* */.
For example, the first two statements in our program are
comments.

— Though comments are not necessary, it is a good practice to
begin a program with a comment indicating the purpose of the
program, its author and the date on which the program was
written.

— Any number of comments can be written at any place in the
program. For example, a comment can be written before the
statement, after the statement or within the statement as shown
below:

f*formula*/ si=p*n*r/100;
si=p*n*r/100; /*formula*
si=p*n*r//*formula* 100;

— Sometimes it is not so obvious as to what a particular
statement in a program accomplishes. At such times it is
worthwhile mentioning the purpose of the statement (or a set
of statements) using a comment. For example:

[* formula for simple interest */
si=p*n*r/100;

— Often programmers seem to ignore writing of comments. But
when a team is building big software well commented code is
almost essential for other team members to understand it.

16 Let Us C

— Although a lot of comments are probably not necessary in this
program, it is usually the case that programmers tend to use
too few comments rather than too many. An adequate number
of comments can save hours of misery and suffering when you
later try to figure out what the program does.

— The normal language rules do not apply to text written within
/* .. *[. Thus we can type this text in small case, capital or a
combination. This is because the comments are solely given
for the understanding of the programmer or the fellow
programmers and are completely ignored by the compiler.

— Comments cannot be nested. For example,
[* Cal of SI /* Author sam date 01/01/2002 */ */
is invalid.

— A comment can be split over more than one line, as in,
[* This is

a jazzy
comment */

Such a comment is often called a multi-line comment.

— main() is a collective name given to a set of statements. This
name has to be main(), it cannot be anything else. All
statements that belong to main() are enclosed within a pair of
braces { } as shown below.

main()

{
statement 1 ;
statement 2 ;

Chapter 1: Getting Started 17

statement 3 ;

}

— Technically speaking main() is a function. Every function has
a pair of parentheses () associated with it. We would discuss
functions and their working in great detail in Chapter 5.

— Any variable used in the program must be declared before
using it. For example,

int p,n;
float r,si;

— Any C statement always ends with a ;
For example,

float r,si;
r=85;

— In the statement,

si=p*n*r/100;

* and / are the arithmetic operators. The arithmetic operators
available in C are +, -, * and /. C is very rich in operators.
There are about 45 operators available in C. Surprisingly there
is no operator for exponentiation... a slip, which can be
forgiven considering the fact that C has been developed by an
individual, not by a committee.

— Once the value of si is calculated it needs to be displayed on
the screen. Unlike other languages, C does not contain any
instruction to display output on the screen. All output to screen
is achieved using readymade library functions. One such

18 Let Us C

function is printf(). We have used it display on the screen the
value contained in si.

The general form of printf(') function is,
printf ("<format string>", <list of variables>) ;
<format string> can contain,

%f for printing real values
%d for printing integer values
%c for printing character values

In addition to format specifiers like %f, %d and %c the
format string may also contain any other characters. These
characters are printed as they are when the printf() is
executed.

Following are some examples of usage of printf() function:

printf ("%f", si) ;

printf ("%d %d %f %f", p, n, 1, si);
printf ("Simple interest = Rs. %f", si) ;
printf ("Prin = %d \nRate = %f", p, 1) ;

The output of the last statement would look like this...

Prin = 1000
Rate = 8.5

What is ‘\n’ doing in this statement? It is called newline and it
takes the cursor to the next line. Therefore, you get the output
split over two lines. “\n” is one of the several Escape
Sequences available in C. These are discussed in detail in
Chapter 11. Right now, all that we can say is “\n” comes in

Chapter 1: Getting Started 19

handy when we want to format the output properly on
separate lines.

printf() can not only print values of variables, it can also
print the result of an expression. An expression is nothing but
a valid combination of constants, variables and operators.
Thus, 3,3+ 2, canda+ b * c - d all are valid expressions.
The results of these expressions can be printed as shown
below:

printf ("%d %d %d %d", 3,3 +2,c,a+b*c-d);

Note that 3 and c also represent valid expressions.

Compilation and Execution

Once you have written the program you need to type it and instruct
the machine to execute it. To type your C program you need
another program called Editor. Once the program has been typed it
needs to be converted to machine language (0s and 1s) before the
machine can execute it. To carry out this conversion we need
another program called Compiler. Compiler vendors provide an
Integrated Development Environment (IDE) which consists of an
Editor as well as the Compiler.

There are several such IDEs available in the market targeted
towards different operating systems. For example, Turbo C, Turbo
C++ and Microsoft C are some of the popular compilers that work
under MS-DOS; Visual C++ and Borland C++ are the compilers
that work under Windows, whereas gcc compiler works under
Linux. Note that Turbo C++, Microsoft C++ and Borland C++
software also contain a C compiler bundled with them. If you are a
beginner you would be better off using a simple compiler like
Turbo C or Turbo C++. Once you have mastered the language
elements you can then switch over to more sophisticated compilers
like Visual C++ under Windows or gcc under Linux. Most of the

20 Let Us C

programs in this book would work with all the compilers.
Wherever there is a deviation | would point it out that time.

Assuming that you are using a Turbo C or Turbo C++ compiler
here are the steps that you need to follow to compile and execute
your first C program...

(a) Start the compiler at C> prompt. The compiler (TC.EXE is
usually present in C:\TC\BIN directory).

(b) Select New from the File menu.

(c) Type the program.

(d) Save the program using F2 under a proper name (say
Programl.c).

(e) Use Ctrl + F9 to compile and execute the program.

(F) Use Alt + F5 to view the output.

Note that on compiling the program its machine language
equivalent is stored as an EXE file (Program1.EXE) on the disk.
This file is called an executable file. If we copy this file to another
machine we can execute it there without being required to
recompile it. In fact the other machine need not even have a
compiler to be able to execute the file.

A word of caution! If you run this program in Turbo C++
compiler, you may get an error — “The function printf should
have a prototype”. To get rid of this error, perform the following
steps and then recompile the program.

(@) Select ‘Options’ menu and then select ‘Compiler | C++
Options’. In the dialog box that pops up, select ‘CPP always’
in the *‘Use C++ Compiler’ options.

(b) Again select ‘Options’ menu and then select ‘Environment |
Editor’. Make sure that the default extension is ‘C’ rather than
‘CPP’.

Chapter 1: Getting Started 21

Receiving Input

In the program discussed above we assumed the values of p, n and
r to be 1000, 3 and 8.5. Every time we run the program we would
get the same value for simple interest. If we want to calculate
simple interest for some other set of values then we are required to
make the relevant change in the program, and again compile and
execute it. Thus the program is not general enough to calculate
simple interest for any set of values without being required to
make a change in the program. Moreover, if you distribute the
EXE file of this program to somebody he would not even be able
to make changes in the program. Hence it is a good practice to
create a program that is general enough to work for any set of
values.

To make the program general the program itself should ask the
user to supply the values of p, n and r through the keyboard during
execution. This can be achieved using a function called scanf().
This function is a counter-part of the printf() function. printf()
outputs the values to the screen whereas scanf() receives them
from the keyboard. This is illustrated in the program shown below.

[* Calculation of simple interest */
* Author gekay Date 25/05/2004 */

main()

{
int p,n;
float r,si;

printf ("Enter values of p, n, ") ;
scanf ("%d %d %f", &p, &n, &r) ;

si=p*n*r/100;
printf ("%f" , si);

22 Let Us C

The first printf() outputs the message ‘Enter values of p, n, r’ on
the screen. Here we have not used any expression in printf()
which means that using expressions in printf() is optional.

Note that the ampersand (&) before the variables in the scanf()
function is a must. & is an ‘Address of’ operator. It gives the
location number used by the variable in memory. When we say
&a, we are telling scanf() at which memory location should it
store the value supplied by the user from the keyboard. The
detailed working of the & operator would be taken up in Chapter
5.

Note that a blank, a tab or a new line must separate the values
supplied to scanf(). Note that a blank is creating using a spacebar,
tab using the Tab key and new line using the Enter key. This is
shown below:

Ex.: The three values separated by blank

10005 155

Ex.: The three values separated by tab.
1000 5 155

Ex.: The three values separated by newline.
1000
5
155

So much for the tips. How about another program to give you a
feel of things...

* Just for fun. Author; Bozo */
main()

{

int num;

printf ("Enter a number") ;

Chapter 1: Getting Started 23

scanf ("%d", &num) ;

printf ("Now | am letting you on a secret...") ;
printf ("You have just entered the number %d", num) ;

}

C Instructions

Now that we have written a few programs let us look at the
instructions that we used in these programs. There are basically
three types of instructions in C:

(@ Type Declaration Instruction
(b) Arithmetic Instruction
(c) Control Instruction

The purpose of each of these instructions is given below:

(@ Type declaration instruction — To declare the type of
variables used in a C
program.

(b) Arithmetic instruction — To perform arithmetic

operations between con-
stants and variables.

(c) Control instruction — To control the sequence of
execution of various state-
ments in a C program.

Since, the elementary C programs would usually contain only the
type declaration and the arithmetic instructions; we would discuss
only these two instructions at this stage. The other types of
instructions would be discussed in detail in the subsequent
chapters.

24 Let UsC

Type Declaration Instruction

This instruction is used to declare the type of variables being used
in the program. Any variable used in the program must be declared
before using it in any statement. The type declaration statement is
written at the beginning of main() function.

Ex.. int bas;
float rs, grosssal ;
char name, code ;

There are several subtle variations of the type declaration
instruction. These are discussed below:

(@) While declaring the type of variable we can also initialize it as
shown below.

inti=10,j=25;
floata=150b=199+24*1.44;

(b) The order in which we define the variables is sometimes
important sometimes not. For example,

inti=10,j=25;

IS same as
intj=25,j=10;
However,
flbata=15b=a+3.1;
is alright, but

float b=a+3.1,a=15;

Chapter 1: Getting Started 25

is not. This is because here we are trying to use a even before
defining it.

(c) The following statements would work

inta, b, c,d;
a=b=c=10;

However, the following statement would not work
inta=b=c=d=10;

Once again we are trying to use b (to assign to a) before
defining it.

Arithmetic Instruction

A C arithmetic instruction consists of a variable name on the left
hand side of = and variable names & constants on the right hand
side of =. The variables and constants appearing on the right hand
side of = are connected by arithmetic operators like +, -, *, and /.

Ex.. int ad;
float kot, deta, alpha, beta, gamma ;
ad =3200;
kot = 0.0056 ;
deta = alpha * beta / gamma +3.2*2/5;

Here,

*, 1, -, + are the arithmetic operators.

= is the assignment operator.

2, 5 and 3200 are integer constants.

3.2 and 0.0056 are real constants.

ad is an integer variable.

kot, deta, alpha, beta, gamma are real variables.

26 Let Us C

The variables and constants together are called ‘operands’ that are
operated upon by the ‘arithmetic operators’ and the result is
assigned, using the assignment operator, to the variable on left-
hand side.

A C arithmetic statement could be of three types. These are as
follows:

(@) Integer mode arithmetic statement - This is an arithmetic
statement in which all operands are either integer variables or
integer constants.

Ex.. int i, king, issac, noteit ;
i=i+1;
king = issac * 234 + noteit - 7689 ;
(o) Real mode arithmetic statement - This is an arithmetic

statement in which all operands are either real constants or
real variables.

Ex.: float gbee, antink, si, prin, anoy, roi ;
gbee = antink + 23.123 /4.5 * 0.3442 ;
si = prin * anoy * roi / 100.0 ;

(c) Mixed mode arithmetic statement - This is an arithmetic
statement in which some of the operands are integers and
some of the operands are real.

Ex.. float si, prin, anoy, roi, avg ;
int a, b, c,num;
si = prin *anoy * roi / 100.0 ;
avg=(at+b+c+num)/4;

It is very important to understand how the execution of an
arithmetic statement takes place. Firstly, the right hand side is
evaluated using constants and the numerical values stored in the
variable names. This value is then assigned to the variable on the
left-hand side.

Chapter 1: Getting Started 27

Though Arithmetic instructions look simple to use one often
commits mistakes in writing them. Let us take a closer look at
these statements. Note the following points carefully.

(@)

(b)

(©)

(d)

C allows only one variable on left-hand side of =. That is, z =
k * I is legal, whereas k * | = z is illegal.

In addition to the division operator C also provides a modular
division operator. This operator returns the remainder on
dividing one integer with another. Thus the expression 10 / 2
yields 5, whereas, 10 % 2 yields 0. Note that the modulus
operator (%) cannot be applied on a float. Also note that on
using % the sign of the remainder is always same as the sign
of the numerator. Thus -5 % 2 yields -1, whereas, 5 % -2
yields 1.

An arithmetic instruction is often used for storing character
constants in character variables.

char a,b,d;

o T o
I mnn
+ T

When we do this the ASCII values of the characters are stored
in the variables. ASCII values are used to represent any
character in memory. The ASCII values of ‘F* and ‘G’ are 70
and 71 (refer the ASCII Table in Appendix E).

Arithmetic operations can be performed on ints, floats and
chars.

Thus the statements,

char xy;
int z;
x="1a;
y="b";
Z=X+Yy;

28

Let UsC

(€)

(f)

are perfectly valid, since the addition is performed on the
ASCII values of the characters and not on characters
themselves. The ASCII values of ‘a’ and ‘b’ are 97 and 98,
and hence can definitely be added.

No operator is assumed to be present. It must be written
explicitly. In the following example, the multiplication
operator after b must be explicitly written.

a = c.d.b(xy) usual arithmetic statement
b=c*d*b*(x*y) C statement

Unlike other high level languages, there is no operator for
performing exponentiation operation. Thus following
statements are invalid.

a=3*2;:
h=322;

If we want to do the exponentiation we can get it done this
way:

#include <math.h>
main()
-
inta;
a=pow(3,2);
printf (“%d”, a) ;
}

Here pow() function is a standard library function. It is being
used to raise 3 to the power of 2. #include <math.h> is a
preprocessor directive. It is being used here to ensure that the
pow() function works correctly. We would learn more about
standard library functions in Chapter 5 and about preprocessor
in Chapter 7.

Chapter 1: Getting Started 29

Integer and Float Conversions

In order to effectively develop C programs, it will be necessary to
understand the rules that are used for the implicit conversion of
floating point and integer values in C. These are mentioned below.
Note them carefully.

(@ An arithmetic operation between an integer and integer
always yields an integer result.

(b) An operation between a real and real always yields a real
result.

(c) An operation between an integer and real always yields a real
result. In this operation the integer is first promoted to a real
and then the operation is performed. Hence the result is real.

I think a few practical examples shown in the following figure
would put the issue beyond doubt.

Operation Result Operation Result

5/2 2 2/5 0

50/2 25 20/5 0.4

5/20 25 2/5.0 0.4

5.0/20 25 2.0/5.0 0.4
Figure 1.6

Type Conversion in Assignments

It may so happen that the type of the expression and the type of the
variable on the left-hand side of the assignment operator may not
be same. In such a case the value of the expression is promoted or

30 Let Us C

demoted depending on the type of the variable on left-hand side of

For example, consider the following assignment statements.

int i;

float b;
i=35;
b=30;

Here in the first assignment statement though the expression’s
value is a float (3.5) it cannot be stored in i since it is an int. In
such a case the float is demoted to an int and then its value is
stored. Hence what gets stored in i is 3. Exactly opposite happens
in the next statement. Here, 30 is promoted to 30.000000 and then
stored in b, since b being a float variable cannot hold anything
except a float value.

Instead of a simple expression used in the above examples if a
complex expression occurs, still the same rules apply. For
example, consider the following program fragment.

float a, b, c;
int s;
s=a*b*c/100+32/4-3*1.1;

Here, in the assignment statement some operands are ints whereas
others are floats. As we know, during evaluation of the expression
the ints would be promoted to floats and the result of the
expression would be a float. But when this float value is assigned
to s it is again demoted to an int and then stored in s.

Observe the results of the arithmetic statements shown in Figure
1.7. It has been assumed that K is an integer variable and a is a real
variable.

Chapter 1: Getting Started 31

Arithmetic Instruction | Result | Arithmetic Instruction | Result
k=2/9 0 a=2/9 0.0
k=2.0/9 0 a=20/9 0.2222
k=2/9.0 0 a=2/9.0 0.2222
k=2.0/9.0 0 a=2.0/9.0 0.2222
k=9/2 4 a=9/2 4.0
k=9.0/2 4 a=9.0/2 45
k=9/20 4 a=9/20 45
k=9.0/20 4 a=9.0/20 45
Figure 1.7

Note that though the following statements give the same result, 0,
the results are obtained differently.

k=2/9;
k=20/9;

In the first statement, since both 2 and 9 are integers, the result is
an integer, i.e. 0. This 0 is then assigned to k. In the second
statement 9 is promoted to 9.0 and then the division is performed.
Division yields 0.222222. However, this cannot be stored in k, k
being an int. Hence it gets demoted to 0 and then stored in K.

Hierarchy of Operations

While executing an arithmetic statement, which has two or more
operators, we may have some problems as to how exactly does it
get executed. For example, does the expression 2 * x - 3 * y
correspond to (2x)-(3y) or to 2(x-3y)? Similarly, does A/ B * C
correspond to A/ (B * C) or to (A / B) * C? To answer these
questions satisfactorily one has to understand the ‘hierarchy’ of
operations. The priority or precedence in which the operations in

32 Let Us C

an arithmetic statement are performed is called the hierarchy of
operations. The hierarchy of commonly used operators is shown in
Figure 1.8.

Priority | Operators | Description
1% *1 % multiplication. division. modular division
2" +- addition, subtraction
3" = assignment
Figure 1.8

Now a few tips about usage of operators in general.

(@) Within parentheses the same hierarchy as mentioned in Figure
1.11 is operative. Also, if there are more than one set of
parentheses, the operations within the innermost parentheses
would be performed first, followed by the operations within
the second innermost pair and so on.

(b) We must always remember to use pairs of parentheses. A
careless imbalance of the right and left parentheses is a
common error. Best way to avoid this error is to type () and
then type an expression inside it.

A few examples would clarify the issue further.

Example 1.1: Determine the hierarchy of operations and evaluate
the following expression:

i=2*3/4+4/4+8-2+5/8
Stepwise evaluation of this expression is shown below:

i=2*3/4+4/4+8-2+5/8

Chapter 1: Getting Started 33

i=6/4+4/4+8-2+5/8 operation: *
i=1+4/4+8-2+5/8 operation: /
i=1+1+8-2+5/8 operation: /
i=1+1+8-2+0 operation: /
i=2+8-2+0 operation: +
i=10-2+0 operation; +
i=8+0 operation : -
i=8 operation: +

Note that 6 / 4 gives 1 and not 1.5. This so happens because 6 and
4 both are integers and therefore would evaluate to only an integer
constant. Similarly 5 / 8 evaluates to zero, since 5 and 8 are integer
constants and hence must return an integer value.

Example 1.2: Determine the hierarchy of operations and evaluate
the following expression:

kk=3/2*4+3/8+3

Stepwise evaluation of this expression is shown below:

kk=3/2*4+3/8+3

kk=1*4+3/8+3 operation: /
kk=4+3/8+3 operation: *
kk=4+0+3 operation:; /
kk=4+3 operation: +
kk =7 operation: +

Note that 3 / 8 gives zero, again for the same reason mentioned in
the previous example.

All operators in C are ranked according to their precedence. And
mind you there are as many as 45 odd operators in C, and these
can affect the evaluation of an expression in subtle and unexpected
ways if we aren't careful. Unfortunately, there are no simple rules
that one can follow, such as “BODMAS” that tells algebra students
in which order does an expression evaluate. We have not

34 Let Us C

encountered many out of these 45 operators, so we won’t pursue
the subject of precedence any further here. However, it can be
realized at this stage that it would be almost impossible to
remember the precedence of all these operators. So a full-fledged
list of all operators and their precedence is given in Appendix A.
This may sound daunting, but when its contents are absorbed in
small bites, it becomes more palatable.

So far we have seen how the computer evaluates an arithmetic
statement written in C. But our knowledge would be incomplete
unless we know how to convert a general arithmetic statement to a
C statement. C can handle any complex expression with ease.
Some of the examples of C expressions are shown in Figure 1.9.

Algebric Expression C Expression

axb-cxd a*b-c*d

(m+n)(@+hb) (m+n)*(a+hb)

X2+ 2x+5 3*X*X+2*x+ 5

a+b+c (a+b+c)/(d+e)

d+e

2BY X 2*b*y/(d+1)-x/
- 3*(z+y)

d+1 3(z+Yy)

Figure 1.9

Associativity of Operators

When an expression contains two operators of equal priority the tie
between them is settled using the associativity of the operators.
Associativity can be of two types—Left to Right or Right to Left.
Left to Right associativity means that the left operand must be

Chapter 1: Getting Started 35

unambiguous. Unambiguous in what sense? It must not be
involved in evaluation of any other sub-expression. Similarly, in
case of Right to Left associativity the right operand must be
unambiguous. Let us understand this with an example.

Consider the expression
a=3/2*5;

Here there is a tie between operators of same priority, that is
between / and *. This tie is settled using the associativity of / and
*. But both enjoy Left to Right associativity. Figure 1.10 shows for
each operator which operand is unambiguous and which is not.

Operator | Left Right Remark
/ 3 2 or 2 * | Left operand is
5 unambiguous, Right is not
* 3/2o0r2 |5 Right operand §
unambiguous, Left is not

Figure 1.10

Since both / and * have L to R associativity and only / has
unambiguous left operand (necessary condition for L to R
associativity) it is performed earlier.

Consider one more expression
a=h=3;

Here both assignment operators have the same priority and same
associativity (Right to Left). Figure 1.11 shows for each operator
which operand is unambiguous and which is not.

36 Let Us C

Operator | Left Right Remark
= a borb=| Left operand is
3 unambiguous, Right is
not
= bora=b |3 Right operand IS
unambiguous, Left is not

Figure 1.11

Since both = have R to L associativity and only the second = has
unambiguous right operand (necessary condition for R to L
associativity) the second = is performed earlier.

Consider yet another expression
z=a*b+c/d;

Here * and / enjoys same priority and same associativity (Left to
Right). Figure 1.12 shows for each operator which operand is
unambiguous and which is not.

Operator | Left | Right | Remark

* a b Both operands are unambiguous
/ c d Both operands are unambiguous
Figure 1.12

Here since left operands for both operators are unambiguous
Compiler is free to perform * or / operation as per its convenience

Chapter 1: Getting Started 37

since no matter which is performed earlier the result would be
same.

Appendix A gives the associativity of all the operators available in
C.

Control Instructions in C

As the name suggests the ‘Control Instructions’ enable us to
specify the order in which the various instructions in a program are
to be executed by the computer. In other words the control
instructions determine the ‘flow of control’ in a program. There
are four types of control instructions in C. They are:

(@) Sequence Control Instruction

(b) Selection or Decision Control Instruction
(c) Repetition or Loop Control Instruction
(d) Case Control Instruction

The Sequence control instruction ensures that the instructions are
executed in the same order in which they appear in the program.
Decision and Case control instructions allow the computer to take
a decision as to which instruction is to be executed next. The Loop
control instruction helps computer to execute a group of statements
repeatedly. In the following chapters we are going to learn these
instructions in detail. Try your hand at the Exercise presented on
the following pages before proceeding to the next chapter, which
discusses the decision control instruction.

Summary

(@) The three primary constants and variable types in C are
integer, float and character.

(b) A variable name can be of maximum 31 characters.

(c) Do not use a keyword as a variable name.

38 Let Us C

(d) An expression may contain any sequence of constants,
variables and operators.

(e) Operators having equal precedence are evaluated using
associativity.

(F) Left to right associativity means that the left operand of a
operator must be unambiguous whereas right to left
associativity means that the right operand of a operator must
be unambiguous.

(9) Input/output in C can be achieved using scanf() and printf()
functions.

Exercise

[A] Which of the following are invalid variable names and why?

BASICSALARY _basic basic-hra
#MEAN group. 422

population in 2006 over time mindovermatter
FLOAT hELLO queue.
team’svictory Plot # 3 2015_DDay

[B] Point out the errors, if any, in the following C statements:

(@ int=314.562 * 150 ;

(b) name = “‘Ajay’;

(c) varchar=+3";

(d) 3.14*r*r*h=vol_of cyl;

() k=(a*b)(c+(25a+b)(d+e);

(f) m_inst = rate of interest * amountinrs ;

Chapter 1: Getting Started 39

(9) si = principal * rateofinterest * numberofyears / 100 ;
(h) area=3.14*r**2;
(i) volume=3.14*r"2*h;
() k=((@*b)+c)(25*a+b);
(k) a=b=3=4;
() count=count+1;
(m) date ='2Mar 04';
[C] Evaluate the following expressions and show their hierarchy.
(@ g=big/2+big*4/big-big+abc/3;
(abc = 2.5, big = 2, assume g to be a float)

(b) on=ink*act/2+3/2*act+2+tig;
(ink = 4, act = 1, tig = 3.2, assume on to be an int)

(c) s=qui*add/4-6/2+2/3*6/god;
(qui =4, add = 2, god = 2, assume s to be an int)

(d) s=1/3*al4-6/2+2/3*6/9;
(a=4, g=3, assume s to be an int)

[D] Fill the following table for the expressions given below and
then evaluate the result. A sample entry has been filled in the
table for expression (a).

40 Let Us C

Operator | Left | Right Remark

/ 10 5o0r5/2 | Left operand is
/1 unambiguous, Right
is not

(@ g=10/5/2/1;
(b) b=3/2+5*4/3;
(c) a=b=c=3+14,;

[E] Convert the following equations into corresponding C

statements.
(a) Z:8.8(a+b)2/c-0.5+2a/(q+r)
(a+b)*(1/m)
- *
(b) X-= b+(b*b)+2 4ac
2a
© R:2v+6.22(c+d)
g+v
@ A:7.7b(xy+a)/c-0.8+2b

(x+a) (1/y)
[F] What would be the output of the following programs:

(@ main()

{

Chapter 1: Getting Started 41

int i=2,j=3,k1;

float a,b;

k=ilj*j;

[=jli*i;

a=ilj*j;

b=jli*i;

printf("%d %d %f %f", k, I, a,b) ;

}

main()
{

int a,b;

a=-3--3;

b=-3--(-3);

printf ("a=%d b =%d", a,b) ;
}

main()
{
floata=5, b=2;
intc;
c=a%b;
printf ("%d", ¢) ;
}

main()

{
printf ("nn \n\n nn\n") ;
printf ("nn /n/n nn/n") ;

}

main()
{
inta, b;
printf ("Enter values of aand b") ;
scanf (" %d %d ", &a, &b) ;
printf ("a =%d b =%d", a,b);

42

Let UsC

[C]

(@)

(b)

(©)

(d)

main()

L
intp,q;
printf ("Enter values of pand q") ;
scanf (" %d %d ", p,q);
printf ("p =%d q=%d", p,q);

Pick up the correct alternative for each of the following
questions:

C language has been developed by
(1) Ken Thompson

(2) Dennis Ritchie

(3) Peter Norton

(4) Martin Richards

C can be used on

(1) Only MS-DOS operating system
(2) Only Linux operating system

(3) Only Windows operating system
(4) All the above

C programs are converted into machine language with the
help of

(1) An Editor

(2) A compiler

(3) An operating system

(4) None of the above

The real constant in C can be expressed in which of the
following forms

(1) Fractional form only

(2) Exponential form only

(3) ASCII form only

Chapter 1: Getting Started 43

(€)

(f)

(@)

(h)

(i)

)

(4) Both fractional and exponential forms

A character variable can at a time store
(1) 1 character

(2) 8 characters

(3) 254 characters

(4) None of the above

The statement char ch = *Z’ would store in ch
(1) The character Z

(2) ASCII value of Z

(3) Z along with the single inverted commas
(4) Both (1) and (2)

Which of the following is NOT a character constant
(1) ‘Thank You’

(2) ‘Enter values of P, N, R’

(3) “23.56E-03’

(4) All the above

The maximum value that an integer constant can have is
(1) -32767

(2) 32767

(3) 1.7014e+38

(4) -1.7014e+38

A C variable cannot start with

(1) An alphabet

(2) A number

(3) A special symbol other than underscore
(4) Both (2) & (3) above

Which of the following statement is wrong
(1) mes=123.56;

(2) con="T"*'A’";

(3) this="T"*20;

(4) 3+a=b;

44 Let Us C

(k) Which of the following shows the correct hierarchy of
arithmetic operators in C
(1) ** *or/,+or-
(2) **, *, /, +, -
(3) **, /, *, +, -
(4) /or* -or+

() Inb=6.6/a+ 2*n; which operation will be performed
first?
(1) 6.6/a
(2) a+2
(3) 2*n
(4) Depends upon compiler

(m) Which of the following is allowed in a C Arithmetic
instruction
(1) [1
2 {}

Q) O
(4) None of the above

(n) Which of the following statements is false
(1) Each new C instruction has to be written on a separate
line
(2) Usually all C statements are entered in small case letters
(3) Blank spaces may be inserted between two words in a C
statement
(4) Blank spaces cannot be inserted within a variable name

(o) Ifaisan integer variable,a=5/2; will return a value
(1) 25
(2) 3
(3) 2
(4) 0

(p) The expression,a=7/22*(3.14+2)*3/5; evaluates to

Chapter 1: Getting Started

45

(a)

(r)

(s)

(t)

(u)

v)

(1) 8.28
(2) 6.28
(3) 3.14
4 0

The expression, a = 30 * 1000 + 2768 ; evaluates to
(1) 32768

(2) -32768

(3) 113040

4 0

The expression X =4 + 2 % - 8 evaluates to
1) -6

(2) 6

3) 4

(4) None of the above

Hierarchy decides which operator
(1) is most important

(2) is used first

(3) is fastest

(4) operates on largest numbers

An integer constant in C must have:
(1) At least one digit

(2) Atleast one decimal point

(3) A comma along with digits

(4) Digits separated by commas

A character variable can never store more than
(1) 32 characters

(2) 8 characters

(3) 254 characters

(4) 1 character

In C a variable cannot contain
(1) Blank spaces

46 Let Us C

(2) Hyphen
(3) Decimal point
(4) All the above

(w) Which of the following is FALSE in C
(1) Keywords can be used as variable names
(2) Variable names can contain a digit
(3) Variable names do not contain a blank space
(4) Capital letters can be used in variable names

(x) In C, Arithmetic instruction cannot contain
(1) variables
(2) constants
(3) variable names on right side of =
(4) constants on left side of =

(y) Which of the following shows the correct hierarchy of
arithmetic operations in C
(1) /4%
(2) *-1+
(3) +-/*
(4) *1+-

(z) What will be the value of d if d is a float after the operation
d=2/7.0?
@ o
(2) 0.2857
(3) Cannot be determined
(4) None of the above

[H] Write C programs for the following:

(@) Ramesh’s basic salary is input through the keyboard. His
dearness allowance is 40% of basic salary, and house rent
allowance is 20% of basic salary. Write a program to calculate
his gross salary.

Chapter 1: Getting Started 47

(b)

(©)

(d)

(€)

()

(9)

(h)

1)

The distance between two cities (in km.) is input through the
keyboard. Write a program to convert and print this distance
in meters, feet, inches and centimeters.

If the marks obtained by a student in five different subjects
are input through the keyboard, find out the aggregate marks
and percentage marks obtained by the student. Assume that
the maximum marks that can be obtained by a student in each
subject is 100.

Temperature of a city in Fahrenheit degrees is input through
the keyboard. Write a program to convert this temperature
into Centigrade degrees.

The length & breadth of a rectangle and radius of a circle are
input through the keyboard. Write a program to calculate the
area & perimeter of the rectangle, and the area &
circumference of the circle.

Two numbers are input through the keyboard into two
locations C and D. Write a program to interchange the
contents of C and D.

If a five-digit number is input through the keyboard, write a
program to calculate the sum of its digits.

(Hint: Use the modulus operator ‘%’)

If a five-digit number is input through the keyboard, write a
program to reverse the number.

If a four-digit number is input through the keyboard, write a
program to obtain the sum of the first and last digit of this
number.

In a town, the percentage of men is 52. The percentage of
total literacy is 48. If total percentage of literate men is 35 of
the total population, write a program to find the total number

48

Let UsC

(k)

(0

(m)

of illiterate men and women if the population of the town is
80,000.

A cashier has currency notes of denominations 10, 50 and
100. If the amount to be withdrawn is input through the
keyboard in hundreds, find the total number of currency notes
of each denomination the cashier will have to give to the
withdrawer.

If the total selling price of 15 items and the total profit earned
on them is input through the keyboard, write a program to
find the cost price of one item.

If a five-digit number is input through the keyboard, write a
program to print a new number by adding one to each of its
digits. For example if the number that is input is 12391 then
the output should be displayed as 23402.

2 The Decision
Control Structure

Decisions! Decisions!
The if Statement

The Real Thing

Multiple Statements within if
The if-else Statement

Nested if-elses

Forms of if
Use of Logical Operators

The else if Clause

The ! Operator

Hierarchy of Operators Revisited
A Word of Caution
The Conditional Operators
Summary
Exercise

49

50 Let Us C

e all need to alter our actions in the face of changing
circumstances. If the weather is fine, then I will go for a
stroll. If the highway is busy | would take a diversion.
If the pitch takes spin, we would win the match. If she says no, |
would look elsewhere. If you like this book, | would write the next

edition. You can notice that all these decisions depend on some
condition being met.

C language too must be able to perform different sets of actions
depending on the circumstances. In fact this is what makes it worth
its salt. C has three major decision making instructions—the if
statement, the if-else statement, and the switch statement. A
fourth, somewhat less important structure is the one that uses
conditional operators. In this chapter we will explore all these
ways (except switch, which has a separate chapter devoted to it,
later) in which a C program can react to changing circumstances.

Decisions! Decisions!

In the programs written in Chapter 1 we have used sequence
control structure in which the various steps are executed
sequentially, i.e. in the same order in which they appear in the
program. In fact to execute the instructions sequentially, we don’t
have to do anything at all. By default the instructions in a program
are executed sequentially. However, in serious programming
situations, seldom do we want the instructions to be executed
sequentially. Many a times, we want a set of instructions to be
executed in one situation, and an entirely different set of
instructions to be executed in another situation. This kind of
situation is dealt in C programs using a decision control
instruction. As mentioned earlier, a decision control instruction
can be implemented in C using:

(@) The if statement
(b) The if-else statement
(c) The conditional operators

Chapter 2: The Decision Control Structure 51

Now let us learn each of these and their variations in turn.

The if Statement

Like most languages, C uses the keyword if to implement the
decision control instruction. The general form of if statement looks
like this:

if (this condition is true)
execute this statement ;

The keyword if tells the compiler that what follows is a decision
control instruction. The condition following the keyword if is
always enclosed within a pair of parentheses. If the condition,
whatever it is, is true, then the statement is executed. If the
condition is not true then the statement is not executed; instead the
program skips past it. But how do we express the condition itself
in C? And how do we evaluate its truth or falsity? As a general
rule, we express a condition using C’s ‘relational’ operators. The
relational operators allow us to compare two values to see whether
they are equal to each other, unequal, or whether one is greater
than the other. Here’s how they look and how they are evaluated in
C.

this expression is true if

X==y xisequal toy

X I=y X is not equal to y

X<y X is less than y

X>y X is greater than y

X <=y X is less than or equal to y
X>=y X is greater than or equal to y

Figure 2.1

52 Let Us C

The relational operators should be familiar to you except for the
equality operator == and the inequality operator !=. Note that = is
used for assignment, whereas, == is used for comparison of two
quantities. Here is a simple program, which demonstrates the use
of if and the relational operators.

[* Demonstration of if statement */
main()

{

int num;

printf ("Enter a number less than 10") ;
scanf ("%d", &num) ;

if (num <=10)
printf ("What an obedient servant you are ") ;

}

On execution of this program, if you type a number less than or
equal to 10, you get a message on the screen through printf(). If
you type some other number the program doesn’t do anything. The
following flowchart would help you understand the flow of control
in the program.

Chapter 2: The Decision Control Structure 53

'

PRINT enter a num
less than 10

{

INPUT num

!
|

PRINT What an obedient
servant you are !

=Q

Figure 2.2

To make you comfortable with the decision control instruction one
more example has been given below. Study it carefully before
reading further. To help you understand it easily, the program is
accompanied by an appropriate flowchart.

Example 2.1: While purchasing certain items, a discount of 10%
is offered if the quantity purchased is more than 1000. If quantity
and price per item are input through the keyboard, write a program
to calculate the total expenses.

o4

Let UsC

START

/

INPUT
qty, rate

/

'
is

—

tot = gty * rate — qty * rate * dis / 100

'

Figure 2.3

[* Calculation of total expenses */
main()

{

int qty,dis=0;
float rate, tot;

printf ("Enter quantity and rate ") ;

scanf ("%d %f", &qty, &rate) ;

if (qty > 1000)
dis=10;

Chapter 2: The Decision Control Structure 55

tot = (gty * rate) - (gty * rate * dis / 100) ;
printf ("Total expenses = Rs. %f", tot) ;

}

Here is some sample interaction with the program.

Enter quantity and rate 1200 15.50
Total expenses = Rs. 16740.000000

Enter quantity and rate 200 15.50
Total expenses = Rs. 3100.000000

In the first run of the program, the condition evaluates to true, as
1200 (value of qty) is greater than 1000. Therefore, the variable
dis, which was earlier set to 0, now gets a new value 10. Using this
new value total expenses are calculated and printed.

In the second run the condition evaluates to false, as 200 (the value
of qty) isn’t greater than 1000. Thus, dis, which is earlier set to 0,
remains 0, and hence the expression after the minus sign evaluates
to zero, thereby offering no discount.

Is the statement dis = 0 necessary? The answer is yes, since in C, a

variable if not specifically initialized contains some unpredictable
value (garbage value).

The Real Thing

We mentioned earlier that the general form of the if statement is as
follows

if (condition)
statement ;

Truly speaking the general form is as follows:

56 Let Us C

if (expression)
statement ;

Here the expression can be any valid expression including a
relational expression. We can even use arithmetic expressions in
the if statement. For example all the following if statements are
valid

if(3+2%5)
printf ("This works") ;

if(a=10)
printf ("Even this works") ;

if(-5)
printf ("Surprisingly even this works") ;

Note that in C a non-zero value is considered to be true, whereas a
0 is considered to be false. In the first if, the expression evaluates
to 5 and since 5 is non-zero it is considered to be true. Hence the
printf() gets executed.

In the second if, 10 gets assigned to a so the if is now reduced to if
(a) orif (10). Since 10 is non-zero, it is true hence again
printf() goes to work.

In the third if, -5 is a non-zero number, hence true. So again
printf() goes to work. In place of -5 even if a float like 3.14 were
used it would be considered to be true. So the issue is not whether
the number is integer or float, or whether it is positive or negative.
Issue is whether it is zero or non-zero.

Multiple Statements within if

It may so happen that in a program we want more than one
statement to be executed if the expression following if is satisfied.
If such multiple statements are to be executed then they must be

Chapter 2: The Decision Control Structure 57

placed within a pair of braces as illustrated in the following
example.

Example 2.2: The current year and the year in which the
employee joined the organization are entered through the
keyboard. If the number of years for which the employee has
served the organization is greater than 3 then a bonus of Rs. 2500/-
is given to the employee. If the years of service are not greater
than 3, then the program should do nothing.

[* Calculation of bonus */
main()

{

int bonus, cy, yoj, yr_of_ser ;

printf ("Enter current year and year of joining ") ;
scanf ("%d %d", &cy, &yoj) ;

yr_of ser=cy-yoj;

if (yr_of_ser>3)
{
bonus = 2500 ;
printf ("Bonus = Rs. %d", bonus) ;

}

Observe that here the two statements to be executed on satisfaction
of the condition have been enclosed within a pair of braces. If a
pair of braces is not used then the C compiler assumes that the
programmer wants only the immediately next statement after the if
to be executed on satisfaction of the condition. In other words we
can say that the default scope of the if statement is the immediately
next statement after it.

58 Let Us C

v

INPUT
cy, Yoj
!

yr_of ser = cy -yoj

no yes

bonus = 2500

PRINT
bonus

VY

<

STOP

Figure 2.4

The if-else Statement

The if statement by itself will execute a single statement, or a
group of statements, when the expression following if evaluates to
true. It does nothing when the expression evaluates to false. Can
we execute one group of statements if the expression evaluates to
true and another group of statements if the expression evaluates to
false? Of course! This is what is the purpose of the else statement
that is demonstrated in the following example:

Example 2.3: In a company an employee is paid as under:

Chapter 2: The Decision Control Structure 59

If his basic salary is less than Rs. 1500, then HRA = 10% of basic
salary and DA = 90% of basic salary. If his salary is either equal to
or above Rs. 1500, then HRA = Rs. 500 and DA = 98% of basic
salary. If the employee's salary is input through the keyboard write
a program to find his gross salary.

[* Calculation of gross salary */
main()

{

float bs, gs, da, hra ;

printf ("Enter basic salary ") ;
scanf ("%f", &bs) ;

if (bs < 1500)

hra=bs*10/100;
da=bhs*90/100;

}
else
{
hra =500 ;
da=bhs*98/100;
}

gs=bs+hra+da;
printf ("gross salary = Rs. %f", gs) ;

60 Let Us C

START

<>

hra =500 hra = bs*10/100
l v
da= bs*98/100 da=bs*90/100

o>

gs =bs + hra + da

'
/ PRINT /
gs

Figure 2.5

A few points worth noting...

(@ The group of statements after the if upto and not including the
else is called an ‘if block’. Similarly, the statements after the
else form the “else block’.

(b) Notice that the else is written exactly below the if. The
statements in the if block and those in the else block have
been indented to the right. This formatting convention is

Chapter 2: The Decision Control Structure 61

followed throughout the book to enable you to understand the
working of the program better.

(c) Had there been only one statement to be executed in the if
block and only one statement in the else block we could have
dropped the pair of braces.

(d) As with the if statement, the default scope of else is also the
statement immediately after the else. To override this default
scope a pair of braces as shown in the above example must be
used.

Nested if-elses

It is perfectly all right if we write an entire if-else construct within
either the body of the if statement or the body of an else statement.
This is called ‘nesting’of ifs. This is shown in the following
program.

* A quick demo of nested if-else */
main()

{

int i;

printf ("Enter either Lor2");
scanf ("%d", &i) ;

if(i==1)

printf ("You would go to heaven ") ;

else
{
if(i==2)
printf ("Hell was created with you in mind") ;
else
printf ("How about mother earth ") ;
}

62 Let Us C

Note that the second if-else construct is nested in the first else
statement. If the condition in the first if statement is false, then the
condition in the second if statement is checked. If it is false as
well, then the final else statement is executed.

You can see in the program how each time a if-else construct is
nested within another if-else construct, it is also indented to add
clarity to the program. Inculcate this habit of indentation,
otherwise you would end up writing programs which nobody (you
included) can understand easily at a later date.

In the above program an if-else occurs within the else block of the
first if statement. Similarly, in some other program an if-else may
occur in the if block as well. There is no limit on how deeply the
ifs and the elses can be nested.

Forms of if
The if statement can take any of the following forms:

(@) if (condition)
do this ;

(b) if (condition)
{
do this ;
and this ;

}

(c) if (condition)
do this ;
else
do this ;
(d) if (condition)
{
do this ;

Chapter 2: The Decision Control Structure

63

and this ;

}

else

{
do this ;
and this ;

}

(e) if (condition)
do this ;
else
{
if (condition)
do this ;
else
{
do this ;
and this ;
}
}

() if (condition)
{
if (condition)
do this ;
else
{
do this ;
and this ;
}
}

else
do this ;

64 Let Us C

Use of Logical Operators

C allows usage of three logical operators, namely, &&, || and !.
These are to be read as ‘AND’ ‘OR’ and ‘NOT’ respectively.

There are several things to note about these logical operators. Most
obviously, two of them are composed of double symbols: || and
&&. Don’t use the single symbol | and &. These single symbols
also have a meaning. They are bitwise operators, which we would
examine in Chapter 14.

The first two operators, && and ||, allow two or more conditions
to be combined in an if statement. Let us see how they are used in
a program. Consider the following example.

Example 2.4: The marks obtained by a student in 5 different
subjects are input through the keyboard. The student gets a
division as per the following rules:

Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division
Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail

Write a program to calculate the division obtained by the student.

There are two ways in which we can write a program for this
example. These methods are given below.

* Method — 1 */
main()

{

int ml1, m2, m3, m4, m5, per;

printf ("Enter marks in five subjects ") ;
scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
per=(ml+m2+m3+m4+m5)/5;

Chapter 2: The Decision Control Structure

65

if (per>=60)
printf ("First division ") ;
else
{
if (per>=50)
printf ("Second division") ;
else
{
if (per>=40)
printf ("Third division") ;
else
printf ("Fail") ;
}
}

}

This is a straight forward program. Observe that the program uses

nested if-elses. This leads to three disadvantages:

(@ As the number of conditions go on increasing the level of
indentation also goes on increasing. As a result the whole

program creeps to the right.

(b) Care needs to be exercised to match the corresponding ifs and

elses.

(c) Care needs to be exercised to match the corresponding pair of

braces.

All these three problems can be eliminated by usage of ‘Logical

operators’. The following program illustrates this.

* Method — 11 */
main()

{

int m1, m2, m3, m4, mb, per ;

printf ("Enter marks in five subjects ") ;

scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;

per=(ml+m2+m3+m4+mb5)/5;

66 Let Us C

if (per>=60)
printf ("First division") ;

if ((per>=50)&& (per<60))
printf ("Second division") ;

if ((per>=40)&& (per<50))
printf ("Third division") ;

if (per<40)
printf ("Fail") ;
}

As can be seen from the second if statement, the && operator is
used to combine two conditions. ‘Second division’ gets printed if
both the conditions evaluate to true. If one of the conditions
evaluate to false then the whole thing is treated as false.

Two distinct advantages can be cited in favour of this program:

(@) The matching (or do | say mismatching) of the ifs with their
corresponding elses gets avoided, since there are no elses in
this program.

(b) In spite of using several conditions, the program doesn't creep
to the right. In the previous program the statements went on
creeping to the right. This effect becomes more pronounced as
the number of conditions go on increasing. This would make
the task of matching the ifs with their corresponding elses and
matching of opening and closing braces that much more
difficult.

The else if Clause

There is one more way in which we can write program for
Example 2.4. This involves usage of else if blocks as shown
below:

Chapter 2: The Decision Control Structure 67

[* else if ladder demo */
main()

{

int m1, m2, m3, m4, m5, per;
per=(ml+m2+m3+ mi4+m5)/ per;

if (per>=60)

printf ("First division") ;
else if (per >=50)

printf ("Second division") ;
else if (per>=40)

printf (“Third division") ;
else

printf ("fail") ;

}

You can note that this program reduces the indentation of the
statements. In this case every else is associated with its previous if.
The last else goes to work only if all the conditions fail. Even in
else if ladder the last else is optional.

Note that the else if clause is nothing different. It is just a way of
rearranging the else with the if that follows it. This would be
evident if you look at the following code:

if(i==2) if(i==2)
printf ("With you...") ; printf ("With you...") ;
else elseif (j==2)
{ printf ("...All the time ") ;
if(j==2)
printf ("...All the time") ;
}

Another place where logical operators are useful is when we want
to write programs for complicated logics that ultimately boil down

68 Let Us C

to only two answers. For example, consider the following
example:

Example 2.5: A company insures its drivers in the following
cases:

— If the driver is married.
— If the driver is unmarried, male & above 30 years of age.
— If the driver is unmarried, female & above 25 years of age.

In all other cases the driver is not insured. If the marital status, sex
and age of the driver are the inputs, write a program to determine
whether the driver is to be insured or not.

Here after checking a complicated set of instructions the final
output of the program would be one of the two—Either the driver
should be ensured or the driver should not be ensured. As
mentioned above, since these are the only two outcomes this
problem can be solved using logical operators. But before we do
that let us write a program that does not make use of logical
operators.

I* Insurance of driver - without using logical operators */

main()

{
char sex, ms;
int age;

printf ("Enter age, sex, marital status ") ;
scanf ("%d %c %c", &age, &sex, &ms) ;

if (ms=="M")

printf ("Driver is insured") ;
else
{

if (sex=="M")

{

Chapter 2: The Decision Control Structure 69

if (age >30)
printf ("Driver is insured") ;
else
printf ("Driver is not insured") ;
}
else
{
if (age>25)
printf ("Driver is insured") ;
else
printf ("Driver is not insured") ;
}

}

From the program it is evident that we are required to match
several ifs and elses and several pairs of braces. In a more real-life
situation there would be more conditions to check leading to the
program creeping to the right. Let us now see how to avoid these
problems by using logical operators.

As mentioned above, in this example we expect the answer to be
either “‘Driver is insured’ or ‘Driver is not insured’. If we list down
all those cases in which the driver is insured, then they would be:

(a) Driver is married.
(b) Driver is an unmarried male above 30 years of age.
(c) Driver is an unmarried female above 25 years of age.

Since all these cases lead to the driver being insured, they can be
combined together using && and || as shown in the program
below:

I* Insurance of driver - using logical operators */
main()

{

char sex, ms;

70

Let UsC

}

int age;

printf ("Enter age, sex, marital status ") ;
scanf ("%d %c %c" &age, &sex, &ms) ;

if ((ms=="M)||(ms=="U &&sex=="M"&& age >30) ||
(ms=="U"&&sex=="F'&& age >25))
printf ("Driver is insured") ;
else
printf ("Driver is not insured") ;

In this program it is important to note that:

The driver will be insured only if one of the conditions

enclosed in parentheses evaluates to true.

For the second pair of parentheses to evaluate to true, each
condition in the parentheses separated by && must evaluate to

true.

Even if one of the conditions in the second parentheses
evaluates to false, then the whole of the second parentheses

evaluates to false.

The last two of the above arguments apply to third pair of

parentheses as well.

Thus we can conclude that the && and || are useful in the
following programming situations:

(a) When it is to be tested whether a value falls within a

particular range or not.

(b) When after testing several conditions the outcome is only one
of the two answers (This problem is often called yes/no

problem).

Chapter 2: The Decision Control Structure

There can be one more situation other than checking ranges or
yes/no problem where you might find logical operators useful. The

following program demonstrates it.

Example 2.6: Write a program to calculate the salary as per the

following table:

Gender | Years of Service | Qualifications Salary
Male >=10 Post-Graduate 15000
>=10 Graduate 10000
<10 Post-Graduate 10000
<10 Graduate 7000
Female | >=10 Post-Graduate 12000
>=10 Graduate 9000
<10 Post-Graduate 10000
<10 Graduate 6000
Figure 2.6
main()
{
char g;

int yos, qual, sal ;

printf ("Enter Gender, Years of Service and

Qualifications (0=G, 1=PG):");

scanf ("%c%d%d", &g, &yos, &qual) ;

if(g=="m&& yos >=10 && qual ==1)
sal = 15000 ;

elseif ((g=="m'&& yos >= 10 && qual ==

(g=="m'&&yos<10&&qual==1))
sal = 10000 ;

)l

12 Let Us C

elseif (g=="m" && yos <10 && qual==0)
sal = 7000 ;

elseif (g=="f && yos >=10 && qual == 1)
sal = 12000 ;

elseif (g=="f && yos >=10 && qual ==0)
sal =9000;

elseif (g=="f && yos <10 && qual == 1)
sal =10000 ;

elseif (g=="f && yos <10 && qual ==0)
sal = 6000 ;

printf ("\nSalary of Employee = %d", sal) ;
}

The ! Operator

So far we have used only the logical operators && and ||. The
third logical operator is the NOT operator, written as !. This
operator reverses the result of the expression it operates on. For
example, if the expression evaluates to a non-zero value, then
applying ! operator to it results into a 0. Vice versa, if the
expression evaluates to zero then on applying ! operator to it
makes it 1, a non-zero value. The final result (after applying !) 0 or
1 is considered to be false or true respectively. Here is an example
of the NOT operator applied to a relational expression.

I(y<10)

This means “not y less than 10”. In other words, if y is less than
10, the expression will be false, since (y < 10) is true. We can
express the same condition as (y >=10).

The NOT operator is often used to reverse the logical value of a
single variable, as in the expression

if (1flag)

Chapter 2: The Decision Control Structure 73

This is another way of saying
if (flag==0)

Does the NOT operator sound confusing? Avoid it if you want, as
the same thing can be achieved without using the NOT operator.

Hierarchy of Operators Revisited

Since we have now added the logical operators to the list of
operators we know, it is time to review these operators and their
priorities. Figure 2.7 summarizes the operators we have seen so
far. The higher the position of an operator is in the table, higher is
its priority. (A full-fledged precedence table of operators is given

in Appendix A.)
Operators Type
! Logical NOT
*| % Arithmetic and modulus
+ - Avrithmetic
< > <= >= Relational
== I= Relational
&& Logical AND
I Logical OR
= Assignment
Figure 2.7

A Word of Caution

What will be the output of the following program:

74 Let Us C

main()

{

int i;

printf ("Enter value of i ") ;
scanf ("%d", &i) ;
if(i=5)
printf ("You entered 5") ;
else
printf ("You entered something other than 5") ;

}

And here is the output of two runs of this program...

Enter value of i 200
You entered 5

Enter value of i 9999
You entered 5

Surprising? You have entered 200 and 9999, and still you find in
either case the output is “You entered 5. This is because we have
written the condition wrongly. We have used the assignment
operator = instead of the relational operator ==. As a result, the
condition gets reduced to if (5), irrespective of what you supply
as the value of i. And remember that in C ‘truth’ is always non-
zero, whereas ‘falsity’ is always zero. Therefore, if (5) always
evaluates to true and hence the result.

Another common mistake while using the if statement is to write a
semicolon (;) after the condition, as shown below:

main()

{

int i;

printf ("Enter value of i ") ;
scanf ("%d", &i) ;

Chapter 2: The Decision Control Structure 75

if(i==5);
printf ("You entered 5") ;
}

The ; makes the compiler to interpret the statement as if you have
written it in following manner:

if(i==5)
printf ("You entered 5") ;

Here, if the condition evaluates to true the ; (null statement, which
does nothing on execution) gets executed, following which the
printf() gets executed. If the condition fails then straightaway the
printf() gets executed. Thus, irrespective of whether the condition
evaluates to true or false the printf() is bound to get executed.
Remember that the compiler would not point out this as an error,
since as far as the syntax is concerned nothing has gone wrong, but
the logic has certainly gone awry. Moral is, beware of such
pitfalls.

The following figure summarizes the working of all the three
logical operators.

Operands Results
X y X ly X&&Y | x|y
0 0 1 1 0 0
0 non-zero |1 0 0 0
non-zero | 0 0 1 0 1
non-zero | non-zero | 0 0 1 1

Figure 2.8

76 Let Us C

The Conditional Operators

The conditional operators ? and : are sometimes called ternary
operators since they take three arguments. In fact, they form a kind
of foreshortened if-then-else. Their general form is,

expression 1 ? expression 2 : expression 3

What this expression says is: “if expression 1 is true (that is, if its
value is non-zero), then the value returned will be expression 2,
otherwise the value returned will be expression 3”. Let us
understand this with the help of a few examples:

(@ int xv;
scanf ("%d", &x) ;
y=(x>5?3:4);

This statement will store 3 in y if x is greater than 5,
otherwise it will store 4 iny.

The equivalent if statement will be,

if (x>5)
y=3;
else
y=4;
(b) char a;
int y;
scanf ("%c", &a) ;
y=(a>=65&&a<=907?1:0);

Here 1 would be assigned to y if a >=65 && a <=90 evaluates to
true, otherwise 0 would be assigned.

The following points may be noted about the conditional
operators:

Chapter 2: The Decision Control Structure 77

(@) It’s not necessary that the conditional operators should be
used only in arithmetic statements. This is illustrated in the
following examples:

Ex. int i;
scanf ("%d", &i) ;
(i==17 printf ("Amit") : printf ("All and sundry")) ;

Ex.. char a='Z;
printf ("%c", (a>="a'?a:"));
(b) The conditional operators can be nested as shown below.

int big,a,b,c;
big=(a>b?(a>c?3:4):(b>c?6:8));
(c) Check out the following conditional expression:

a>b?g=a:.g=b;

This will give you an error ‘Lvalue Required’. The error can
be overcome by enclosing the statement in the : part within a
pair of parenthesis. This is shown below:

a>b?g=a:(g=b);

In absence of parentheses the compiler believes that b is being
assigned to the result of the expression to the left of second =.
Hence it reports an error.

The limitation of the conditional operators is that after the ? or
after the : only one C statement can occur. In practice rarely is this
the requirement. Therefore, in serious C programming conditional
operators aren’t as frequently used as the if-else.

Summary

(@) There are three ways for taking decisions in a program. First
way is to use the if-else statement, second way is to use the

78

Let UsC

(b)

(©)

(d)

(€)
()

(@)

conditional operators and third way is to use the switch
statement.

The default scope of the if statement is only the next
statement. So, to execute more than one statement they must
be written in a pair of braces.

An if block need not always be associated with an else block.
However, an else block is always associated with an if
statement.

If the outcome of an if-else ladder is only one of two answers
then the ladder should be replaced either with an else-if clause
or by logical operators.

&& and || are binary operators, whereas, ! is a unary operator.
In C every test expression is evaluated in terms of zero and
non-zero values. A zero value is considered to be false and a
non-zero value is considered to be true.

Assignment statements used with conditional operators must
be enclosed within a pair of parenthesis.

Exercise

if, if-else, Nested if-elses

[A] What would be the output of the following programs:

(@)

(b)

main()
{
int a=300,b,c;
if (a>=400)
b=300;
c=200;
printf ("\n%d %d", b, ¢) ;
}
main()
int a=500,b,c;

if (a>= 400)

Chapter 2: The Decision Control Structure

79

}

b=300;
c=200;
printf ("\n%d %d", b, ¢) ;

main()

{

}

int x=10,y=20;

if(x==y);
printf ("\n%d %d", X, y) ;

main()

{

}

int x=3,y=5;
if(x==3)

printf ("\n%d", x) ;
else ;

printf ("\n%d", y) ;

main()

{

}

int x=3;
float y=3.0;

if (x==y)

printf ("\nx and y are equal") ;
else

printf ("\nx and y are not equal") ;

main()

{

int x=3,y,2;

y=x=10;

z=x<10;

printf ("\nx = %d y = %d z = %d", x, y, 2)

80

Let UsC

[B]

main()

int k=35
printf ("\n%d %d %d", k == 35, k=50, k>40);
}

main()
Lo
inti=65;
charj="A";
if(i==])
printf (“C is WOW") ;
else
printf("C is a headache") ;

}

main()
{

int a=5,b,c;

b=a=15;

c=a<l15;

printf ("\na =9%d b =%d ¢ =%d", a, b, c);
}

main()
{

int x=15;

printf ("\n%d %d %d", x = 15, x =20, x<30) ;
}

Point out the errors, if any, in the following programs:

main()
{
float a=12.25b=1252;
if(a=b)
printf ("\na and b are equal") ;

Chapter 2: The Decision Control Structure

81

}
(b) main()

int j=10,k=12;
if(k>=j)
{

() main()

if ("X'<'x")
printf ("\nascii value of X is smaller than that of X") ;

}

(d) main()
{
int x=10;
if (x>=2)then
printf ("\n%d", x) ;
}

() main()
{
int x=10;
if x >=2
printf ("\n%d", x) ;
}

() main()
{
int x=10,y=15;
if(x%2=y%3)

Let UsC

[C]
(@)

printf ("\nCarpathians") ;
}

main()
{
intx=30,y=40;
if(x==y)
printf("x is equal to y") ;
elseif (x >y)
printf("x is greater than y") ;
elseif (x<y)
printf("x is less than y") ;

}

main()
{
int x=10;
if (x>=2)then
printf ("\n%d", x) ;
}

main()
{
inta, b;
scanf ("%d %d",a, b) ;
if(a>b);
printf ("This is a game") ;
else
printf ("You have to play it") ;
}

Attempt the following:

If cost price and selling price of an item is input through the
keyboard, write a program to determine whether the seller has
made profit or incurred loss. Also determine how much profit
he made or loss he incurred.

Chapter 2: The Decision Control Structure 83

(b)

()

(d)

(€)

(f)

(@)

(h)

(i)

0

Any integer is input through the keyboard. Write a program to
find out whether it is an odd number or even number.

Any year is input through the keyboard. Write a program to
determine whether the year is a leap year or not.

(Hint: Use the % (modulus) operator)

According to the Gregorian calendar, it was Monday on the
date 01/01/1900. If any year is input through the keyboard
write a program to find out what is the day on 1% January of
this year.

A five-digit number is entered through the keyboard. Write a
program to obtain the reversed number and to determine
whether the original and reversed numbers are equal or not.

If the ages of Ram, Shyam and Ajay are input through the
keyboard, write a program to determine the youngest of the
three.

Write a program to check whether a triangle is valid or not,
when the three angles of the triangle are entered through the
keyboard. A triangle is valid if the sum of all the three angles
is equal to 180 degrees.

Find the absolute value of a number entered through the
keyboard.

Given the length and breadth of a rectangle, write a program to
find whether the area of the rectangle is greater than its
perimeter. For example, the area of the rectangle with length =5
and breadth = 4 is greater than its perimeter.

Given three points (x1, y1), (X2, y2) and (x3, y3), write a
program to check if all the three points fall on one straight line.

84 Let Us C

(k) Given the coordinates (x, y) of a center of a circle and it’s radius,
write a program which will determine whether a point lies inside
the circle, on the circle or outside the circle.

(Hint: Use sgrt() and pow() functions)

() Given a point (x, y), write a program to find out if it lies on the
X-axis, y-axis or at the origin, viz. (0, 0).

Logical Operators

If a =10, b =12, c =0, find the values of the expressions in
the following table:

Expression Value

al=6&&hb>5 1
a==9|b<3
I'(a<10)
I(a>5&&¢)
5&&c!=8]!c

[D] What would be the output of the following programs:

(@ main()
{
int i=4,z=12;
if(i=5]]z>50)
printf ("\nDean of students affairs") ;
else
printf ("\nDosa") ;

}

(b) main()

{
int i=4,z2=12;

Chapter 2: The Decision Control Structure

85

if(i=5&&z2>5)
printf ("\nLetus C") ;
else
printf ("\nWish C was free I") ;
}

() main()
{
int i=4,j=-1,k=0,w,X,Y,2;
w=illjllk;
X=i8&&j&&K;
y=illj&&k;
z=i&&j|| k;
printf ("\nw =%d x = %d y = %d z = %d", w, X, Y, 2) ;
}

(d) main()
{
int i=4,j=-1,k=0,y,2;
y=i+5&&j+1]|k+2;
z=i+5|j+18&8&k+2;
printf ("\ny = %d z = %d", y, z) ;
}

() main()
{
int i=-3,j=
if(li+*1)
printf ("\
else
printf ("\nBennarivo") ;
}

(main()
{
int a=40;
if(a>40&&a<45)
printf ("a is greater than 40 and less than 45") ;

3;

nMassaro") ;

86

Let UsC

else
printf ("%d", a) ;
}

main()
{
int p=8,g=20;
if(p==5&&q>5)
printf ("\nWhy not C") ;
else
printf ("\nDefinitely C ") ;
}

main()
{
inti=-1,j=1,k,l;
k=i&&j;
=il
printf ("%d %d", I, j);
}

main()
{
intx=20,y=40,z=45;
if(X>y&&x>2)
printf("x is big") ;
elseif (y>x&&y>z)
printf("y is big") ;
elseif (z>x&&z>y)
printf("z is big") ;
}

main()
{
inti=-1,j=1,k I;
k=1i&&j;
=1,
printf ("%d %d", i,) ;

Chapter 2: The Decision Control Structure 87

[E]

main()
{
int j=4,k;
k=158&];
printf ("\nk = %d", k) ;
}

Point out the errors, if any, in the following programs:
[* This program

I*is an example of
[* using Logical operators */

main()
{
int i=2,j=5;
if(i==2&&j==5)
printf ("\nSatisfied at last") ;
}
main()
int code, flag ;

if (code==1&flag==0)
printf ("\nThe eagle has landed") ;
}

main()
{
char spy='a/, password ='2";
if (spy == "'a' or password =='z")
printf ("\nAll the birds are safe in the nest") ;
}

main()

{

88

Let UsC

}

int i=10,j=20;
if(i=5)&&if(j=10)
printf ("\nHave a nice day") ;

main()

{

}

int x=10,y=20;
if (x>=2andy<=50)
printf ("\n%d", x) ;

main()

{

}

int a,b;
if(a==1&b==0)
printf ("\nGod is Great") ;

main()

{

}

intx=2;
if (x==28&X1=0);
{
printf ("\nHi") ;
printf("\nHello") ;
}
else
printf(“Bye") ;

main()

{

int i=10,j=10;
if (1 8&j == 10)
printf ("\nHave a nice day") ;

Chapter 2: The Decision Control Structure 89

[F] Attempt the following:

(@ Any year is entered through the keyboard, write a program to
determine whether the year is leap or not. Use the logical

operators && and ||.

(b) Any character is entered through the keyboard, write a
program to determine whether the character entered is a
capital letter, a small case letter, a digit or a special symbol.

The following table shows the range of ASCII values for

various characters.

Characters ASCII Values

A-Z 65-90

a-z 97 - 122

0-9 48 - 57

special symbols 0-47,58-64,91-96,123- 127

(c) An Insurance company follows following rules to calculate

premium.

(1) If a person’s health is excellent and the person is between
25 and 35 years of age and lives in a city and is a male
then the premium is Rs. 4 per thousand and his policy
amount cannot exceed Rs. 2 lakhs.

(2) If a person satisfies all the above conditions except that
the sex is female then the premium is Rs. 3 per thousand
and her policy amount cannot exceed Rs. 1 lakh.

(3) If a person’s health is poor and the person is between 25
and 35 years of age and lives in a village and is a male

90

Let UsC

(d)

(€)

then the premium is Rs. 6 per thousand and his policy
cannot exceed Rs. 10,000.
(4) Inall other cases the person is not insured.

Write a program to output whether the person should be
insured or not, his/her premium rate and maximum amount
for which he/she can be insured.

A certain grade of steel is graded according to the following
conditions:

(i) Hardness must be greater than 50
(if) Carbon content must be less than 0.7
(iii) Tensile strength must be greater than 5600

The grades are as follows:

Grade is 10 if all three conditions are met
Grade is 9 if conditions (i) and (ii) are met
Grade is 8 if conditions (ii) and (iii) are met
Grade is 7 if conditions (i) and (iii) are met
Grade is 6 if only one condition is met
Grade is 5 if none of the conditions are met

Write a program, which will require the user to give values of
hardness, carbon content and tensile strength of the steel
under consideration and output the grade of the steel.

A library charges a fine for every book returned late. For first
5 days the fine is 50 paise, for 6-10 days fine is one rupee and
above 10 days fine is 5 rupees. If you return the book after 30
days your membership will be cancelled. Write a program to
accept the number of days the member is late to return the
book and display the fine or the appropriate message.

Chapter 2: The Decision Control Structure 91

(f)

(9)

(h)

(i)

If the three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is
valid or not. The triangle is valid if the sum of two sides is
greater than the largest of the three sides.

If the three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is
isosceles, equilateral, scalene or right angled triangle.

In a company, worker efficiency is determined on the basis of
the time required for a worker to complete a particular job. If
the time taken by the worker is between 2 — 3 hours, then the
worker is said to be highly efficient. If the time required by
the worker is between 3 — 4 hours, then the worker is ordered
to improve speed. If the time taken is between 4 — 5 hours, the
worker is given training to improve his speed, and if the time
taken by the worker is more than 5 hours, then the worker has
to leave the company. If the time taken by the worker is input
through the keyboard, find the efficiency of the worker.

A university has the following rules for a student to qualify
for a degree with A as the main subject and B as the
subsidiary subject:

(a) He should get 55 percent or more in A and 45 percent or
more in B.

(b) If he gets than 55 percent in A he should get 55 percent or
more in B. However, he should get at least 45 percent in
A.

(c) If he gets less than 45 percent in B and 65 percent or more
in A he is allowed to reappear in an examination in B to
qualify.

(d) In all other cases he is declared to have failed.

Write a program to receive marks in A and B and Output
whether the student has passed, failed or is allowed to
reappear in B.

92 Let Us C

() The policy followed by a company to process customer orders
is given by the following rules:

(a) If a customer order is less than or equal to that in stock
and has credit is OK, supply has requirement.

(b) If has credit is not OK do not supply. Send him
intimation.

(c) If has credit is Ok but the item in stock is less than has
order, supply what is in stock. Intimate to him data the
balance will be shipped.

Write a C program to implement the company policy.

Conditional operators

[G] What would be the output of the following programs:

(@) main()
{
int i=-4,j,num;
j=(num<0?0:num*num);
printf ("\n%d", j) ;

}
(b) main()
{
int k, num=230;
k=(num>5?(num<=107?100:200):500);
printf ("\n%d", num) ;
}
() main()
{

int j=4;
(Y= 17 printf ("\nWelcome") : printf ("\nGood Bye")) ;

Chapter 2: The Decision Control Structure

93

[H] Point out the errors, if any, in the following programs:

(@)

©)

©)

}

main()

{
int tag=0,code=1;
if (tag==0)

(code > 1 ? printf ("\nHello") ? printf ("\nHi")) ;

else
printf ("\nHello Hi ") ;
}

main()
{

int ji=65;

printf ("\nji >= 65 ? %d : %c", ji) ;
}

main()

{
int 1=10,j;
i>=5?(j=10):(j=15);
printf ("\n%d %d", i,) ;

}

main()

{

inta=5,b=6;

(a==b? printf("%d",a)) ;
}

main()

{

intn=9;

(n==9 7 printf("You are correct") ; : printf("You are wrong") ;) ;

}

94

Let UsC

(b)

main()

int kk=65;

Il = (kk == 65 : printf ("\n kk is equal to 65") : printf ("\n kk is not
equal to 65"));

printf("%d", II') ;
}

main()
{

int x=10,y=20;

x==20&&y =10 ? printf("True") : printf("False") ;
}

Rewrite the following programs using conditional operators.

main()
- |
int X, min, max ;
scanf ("\n%d %d", &max, &x) ;
if (X > max)
max =x;
else
min=x:

}

main()
{
int code ;
scanf ("%d", &code) ;
if (code>1)
printf ("\nJerusalem") ;
else
if (code<1)
printf ("\nEddie") ;
else
printf ("\nC Brain") ;

Chapter 2: The Decision Control Structure 95

©)

[J]
(@)

(b)

(©)

main()
{
float sal ;
printf ("Enter the salary") ;
scanf ("%f", &sal) ;
if (sal < 40000 && sal > 25000)
printf ("Manager") ;
else
if (sal < 25000 && sal > 15000)
printf ("Accountant") ;
else
printf ("Clerk") ;
}

Attempt the following:
Using conditional operators determine:

(1) Whether the character entered through the keyboard is a
lower case alphabet or not.

(2) Whether a character entered through the keyboard is a
special symbol or not.

Write a program using conditional operators to determine
whether a year entered through the keyboard is a leap year or
not.

Write a program to find the greatest of the three numbers
entered through the keyboard using conditional operators.

96

Let UsC

Loops
The while Loop
Tips and Traps
More Operators
The for Loop
Nesting of Loops
Multiple Initialisations in the for Loop
The Odd Loop
The break Statement
The continue Statement
The do-while Loop
Summary
Exercise

he programs that we have developed so far used either a
sequential or a decision control instruction. In the first one,
the calculations were carried out in a fixed order, while in
the second, an appropriate set of instructions were executed
depending upon the outcome of the condition being tested (or a

logical decision being taken).

97

98 Let Us C

These programs were of limited nature, because when executed,
they always performed the same series of actions, in the same way,
exactly once. Almost always, if something is worth doing, it’s
worth doing more than once. You can probably think of several
examples of this from real life, such as eating a good dinner or
going for a movie. Programming is the same; we frequently need
to perform an action over and over, often with variations in the
details each time. The mechanism, which meets this need, is the
‘loop’, and loops are the subject of this chapter.

Loops

The versatility of the computer lies in its ability to perform a set of
instructions repeatedly. This involves repeating some portion of
the program either a specified number of times or until a particular
condition is being satisfied. This repetitive operation is done
through a loop control instruction.

There are three methods by way of which we can repeat a part of a
program. They are:

(@) Using a for statement
(b) Using a while statement
(c) Using a do-while statement

Each of these methods is discussed in the following pages.

The while Loop

It is often the case in programming that you want to do something
a fixed number of times. Perhaps you want to calculate gross
salaries of ten different persons, or you want to convert
temperatures from centigrade to fahrenheit for 15 different cities.

Chapter 3: The Loop Control Structure 99

The while loop is ideally suited for such cases. Let us look at a
simple example, which uses a while loop. The flowchart shown
below would help you to understand the operation of the while

loop.
START
count=1
si=p*n*r/100
count = count + 1
Figure 3.1
[* Calculation of simple interest for 3 sets of p, n and r */
main()
L
int p, n, count;
float r,si;

count=1;

100 Let Us C

while (count<=3)

{
printf ("\nEnter values of p,nandr");
scanf ("%d %d %f", &p, &n, &r) ;
si=p*n*r/100;
printf ("Simple interest = Rs. %f", si) ;
count=count+1:

}

}

And here are a few sample runs...

Enter values of p, nand r 1000 5 13.5
Simple interest = Rs. 675.000000

Enter values of p, nand r 2000 5 13.5
Simple interest = Rs. 1350.000000
Enter values of p, nandr 3500 5 3.5
Simple interest = Rs. 612.500000

The program executes all statements after the while 3 times. The
logic for calculating the simple interest is written within a pair of
braces immediately after the while keyword. These statements
form what is called the ‘body’ of the while loop. The parentheses
after the while contain a condition. So long as this condition
remains true all statements within the body of the while loop keep
getting executed repeatedly. To begin with the variable count is
initialized to 1 and every time the simple interest logic is executed
the value of count is incremented by one. The variable count is
many a times called either a ‘loop counter’ or an “index variable’.

The operation of the while loop is illustrated in the following
figure.

Chapter 3: The Loop Control Structure 101

START

| initialise |

test %

True
STOP

| body of loop |

| increment |

Figure 3.2
Tips and Traps
The general form of while is as shown below:

initialise loop counter ;
while (test loop counter using a condition)

{

do this ;

and this ;

increment loop counter ;
}

Note the following points about while...

— The statements within the while loop would keep on getting
executed till the condition being tested remains true. When the

102 Let Us C

condition becomes false, the control passes to the first
statement that follows the body of the while loop.

In place of the condition there can be any other valid
expression. So long as the expression evaluates to a non-zero
value the statements within the loop would get executed.

The condition being tested may use relational or logical
operators as shown in the following examples:

while (i1<=10)
while (1>=10&&j<=15)
while (j>108&& (b<15(|c<20))

The statements within the loop may be a single line or a block
of statements. In the first case the parentheses are optional. For
example,

while (i<=10)
i=i+1;

is same as

while (i<=10)
{

}

As a rule the while must test a condition that will eventually
become false, otherwise the loop would be executed forever,
indefinitely.

i=i+1;

main()

{
int i=1;
while (i<=10)

printf ("%d\n", i) ;

Chapter 3: The Loop Control Structure 103

This is an indefinite loop, since i remains equal to 1 forever.
The correct form would be as under:

main()

{
int i=1;
while (i<=10)

printf ("%d\n", i) ;
i=i+1;
}
}

— Instead of incrementing a loop counter, we can even decrement
it and still manage to get the body of the loop executed
repeatedly. This is shown below:

main()
{
int i=5;
while (i>=1)
{
printf ("\nMake the computer literate!") ;
i=i-1;
}
}

— It is not necessary that a loop counter must only be an int. It
can even be a float.

main()
{
float a=10.0;
while (a<=10.5)
{
printf ("\nRaindrops on roses...") ;
printf ("...and whiskers on kittens") ;
a=a+0.1;

104 Let Us C

}
}

— Even floating point loop counters can be decremented. Once
again the increment and decrement could be by any value, not
necessarily 1.

What do you think would be the output of the following
program?

main()
{
int i=1;
while (i <=32767)

printf ("%d\n", i) ;
i=i+1;
}
}

No, it doesn’t print numbers from 1 to 32767. It’s an
indefinite loop. To begin with, it prints out numbers from 1 to
32767. After that value of i is incremented by 1, therefore it
tries to become 32768, which falls outside the valid integer
range, so it goes to other side and becomes -32768 which
would certainly satisfy the condition in the while. This
process goes on indefinitely.

— What will be the output of the following program?

main()

Lo
int 1=1;
while (i<=10);

printf ("%d\n", i) ;
i=i+1;

Chapter 3: The Loop Control Structure 105

This is another indefinite loop, and it doesn’t give any output
at all. The reason is, we have carelessly given a ; after the
while. This would make the loop work like this...

while (i<=10)

{
printf ("%d\n", i) ;
i=i+1;

}

Since the value of i is not getting incremented the control
would keep rotating within the loop, eternally. Note that
enclosing printf() and i =i +1 within a pair of braces is not
an error. In fact we can put a pair of braces around any
individual statement or set of statements without affecting the
execution of the program.

More Operators

There are variety of operators which are frequently used with
while. To illustrate their usage let us consider a problem wherein
numbers from 1 to 10 are to be printed on the screen. The program
for performing this task can be written using while in the
following different ways:

(@ main()
{
int i=1;
while (1<=10)

printf ("%d\n", i) ;
i=i+1;

106 Let Us C

(b) main()
{
int i=1;
while (1<=10)
{
printf ("%d\n", i) ;
i++
}
}

Note that the increment operator ++ increments the value of i
by 1, every time the statement i++ gets executed. Similarly, to
reduce the value of a variable by 1 a decrement operator -- is
also available.

However, never use n+++ to increment the value of n by 2,
since C doesn’t recognize the operator +++.

() main()
{
int i=1;
while (1<=10)

printf ("%d\n", i) ;
i+=1;
}
}

Note that += is a compound assignment operator. It
increments the value of i by 1. Similarly, j = j + 10 can also
be written as j += 10. Other compound assignment operators
are -=, *=, / = and %-=.

(d) main()
{
inti=0;
while (i++<10)

Chapter 3: The Loop Control Structure 107

printf ("%d\n", i) ;
}

In the statement while (i++ < 10), firstly the comparison of
value of i with 10 is performed, and then the incrementation
of i takes place. Since the incrementation of i happens after its
usage, here the ++ operator is called a post-incrementation
operator. When the control reaches printf(), i has already
been incremented, hence i must be initialized to 0.

main()
{
inti=0;
while (++i<=10)
printf ("%d\n", i) ;
}

In the statement while (++i <= 10), firstly incrementation of
i takes place, then the comparison of value of i with 10 is
performed. Since the incrementation of i happens before its
usage, here the ++ operator is called a pre-incrementation
operator.

The for Loop

Perhaps one reason why few programmers use while is that they
are too busy using the for, which is probably the most popular
looping instruction. The for allows us to specify three things about
a loop in a single line:

(a)
(b)

(©)

Setting a loop counter to an initial value.

Testing the loop counter to determine whether its value has
reached the number of repetitions desired.

Increasing the value of loop counter each time the program
segment within the loop has been executed.

108 Let Us C

The general form of for statement is as under:

for (initialise counter ; test counter ; increment counter)

{
do this ;
and this ;
and this ;
}

Let us write down the simple interest program using for. Compare
this program with the one, which we wrote using while. The
flowchart is also given below for a better understanding.

Chapter 3: The Loop Control Structure 109

START

A 4

count<=3

count =count+ 1—>

A4

I Yes

fINPUT / !
PN T STOP

A

si=p*n*r/100

Figure 3.3

[* Calculation of simple interest for 3 sets of p, n and r */
main ()

{

int p, n, count;
float r,si;

for (count=1; count<=3; count=count+1)

{
printf ("Enter values of p, n,andr ") ;
scanf ("%d %d %f", &p, &n, &r) ;
si=p*n*r/100;
printf ("Simple Interest = Rs.%f\n", si) ;
}

110 Let Us C

If this program is compared with the one written using while, it
can be seen that the three steps—initialization, testing and
incrementation—required for the loop construct have now been
incorporated in the for statement.

Let us now examine how the for statement gets executed:

— When the for statement is executed for the first time, the value
of count is set to an initial value 1.

— Now the condition count <= 3 is tested. Since count is 1 the
condition is satisfied and the body of the loop is executed for
the first time.

— Upon reaching the closing brace of for, control is sent back to
the for statement, where the value of count gets incremented
by 1.

— Again the test is performed to check whether the new value of
count exceeds 3.

— If the value of count is still within the range 1 to 3, the
statements within the braces of for are executed again.

— The body of the for loop continues to get executed till count
doesn’t exceed the final value 3.

— When count reaches the value 4 the control exits from the loop
and is transferred to the statement (if any) immediately after
the body of for.

The following figure would help in further clarifying the concept
of execution of the for loop.

Chapter 3: The Loop Control Structure 111

body of loop [STOP]

increment

Figure 3.4

It is important to note that the initialization, testing and
incrementation part of a for loop can be replaced by any valid
expression. Thus the following for loops are perfectly ok.

for (i=10;i;i-)

printf ("%d", i) ;
for(i<4;j=5;j=0)

printf ("%d", 1) ;
for (i=1;i<=10; printf ("%d",i++)

for (scanf ("%d", &) <= 10 i++)
printf ("%d", i) ;

Let us now write down the program to print numbers from 1 to 10
in different ways. This time we would use a for loop instead of a
while loop.

112 Let Us C

@)

©)

main()
.
int i;
for(i=1;i<=10;i=i+1)
printf ("%d\n", i) ;
}

Note that the initialisation, testing and incrementation of loop
counter is done in the for statement itself. Instead of i =i + 1,
the statements i++ or i += 1 can also be used.

Since there is only one statement in the body of the for loop,
the pair of braces have been dropped. As with the while, the
default scope of for is the immediately next statement after
for.

main()
I
int i;
for(i=1;i<=10;)
{
printf ("%d\n", i) ;
i=i+1;
}
}

Here, the incrementation is done within the body of the for
loop and not in the for statement. Note that inspite of this the
semicolon after the condition is necessary.

main()
{
int i=1;
for(;i<=10;i=i+1)
printf ("%d\n", i) ;

Chapter 3: The Loop Control Structure 113

(0

Here the initialisation is done in the declaration statement
itself, but still the semicolon before the condition is necessary.

main()
{
int i=1;
for (;i<=10;)
printf ("%d\n", i) ;
i=i+1;
}
}

Here, neither the initialisation, nor the incrementation is done
in the for statement, but still the two semicolons are
necessary.

main()
{ . .
int i;
for(i=0;i++<10;)
printf ("%d\n", i) ;
}

Here, the comparison as well as the incrementation is done
through the same statement, i++ < 10. Since the ++ operator
comes after i firstly comparison is done, followed by
incrementation. Note that it is necessary to initialize i to 0.

main()
-
int i;
for(i=0;++<=10;)
printf ("%d\n", i) ;

114 Let Us C

Here, both, the comparison and the incrementation is done
through the same statement, ++i <= 10. Since ++ precedes i
firstly incrementation is done, followed by comparison. Note
that it is necessary to initialize i to 0.

Nesting of Loops

The way if statements can be nested, similarly whiles and fors can
also be nested. To understand how nested loops work, look at the
program given below:

* Demonstration of nested loops */

main()
b
int r,c,sum;
for(r=1;r<=3;r++) /[* outer loop */
{
for(c=1;c<=2;c++) innerloop */
{
sum=r+c;
printf ("r = %d ¢ = %d sum = %d\n", r, ¢, sum) ;
}
}
}

When you run this program you will get the following output:

r=1c=1sum=2
r=1c=2sum=3
r=2c=1sum=3
r=2c=2sum=4
r=3c=1sum=4
r=3c=2sum=5

Here, for each value of r the inner loop is cycled through twice,
with the variable ¢ taking values from 1 to 2. The inner loop

Chapter 3: The Loop Control Structure 115

terminates when the value of c exceeds 2, and the outer loop
terminates when the value of r exceeds 3.

As you can see, the body of the outer for loop is indented, and the
body of the inner for loop is further indented. These multiple
indentations make the program easier to understand.

Instead of using two statements, one to calculate sum and another
to print it out, we can compact this into one single statement by
saying:

printf ("r = %d ¢ = %d sum = %d\n",r, c,r+c);

The way for loops have been nested here, similarly, two while
loops can also be nested. Not only this, a for loop can occur within
a while loop, or a while within a for.

Multiple Initialisations in the for Loop

The initialisation expression of the for loop can contain more than
one statement separated by a comma. For example,

for(i=1,j=2;j<=10;j++)

Multiple statements can also be used in the incrementation
expression of for loop; i.e., you can increment (or decrement) two
or more variables at the same time. However, only one expression
is allowed in the test expression. This expression may contain
several conditions linked together using logical operators.

Use of multiple statements in the initialisation expression also
demonstrates why semicolons are used to separate the three
expressions in the for loop. If commas had been used, they could
not also have been used to separate multiple statements in the
initialisation expression, without confusing the compiler.

116 Let Us C

The Odd Loop

The loops that we have used so far executed the statements within
them a finite number of times. However, in real life programming
one comes across a situation when it is not known beforehand how
many times the statements in the loop are to be executed. This
situation can be programmed as shown below:

* Execution of a loop an unknown number of times */

main()
{
char another ;
int num ;
do
{

printf ("Enter a number ") ;
scanf ("%d", &num) ;
printf ("square of %d is %d", num, num * num) ;
printf ("\nWant to enter another numbery/n");
scanf (" %c", &another) ;

} while (another =='y");

}

And here is the sample output...

Enter a number 5
square of 5 is 25
Want to enter another number y/n'y
Enter a number 7
square of 7 is 49
Want to enter another number y/n n

In this program the do-while loop would keep getting executed till
the user continues to answer y. The moment he answers n, the loop
terminates, since the condition (another == "y") fails. Note that
this loop ensures that statements within it are executed at least
once even if n is supplied first time itself.

Chapter 3: The Loop Control Structure 117

Though it is simpler to program such a requirement using a do-
while loop, the same functionality if required, can also be
accomplished using for and while loops as shown below:

[* odd loop using a for loop */

main()

{
char another='';
int num ;
for (; another=="y';)
{

printf ("Enter a number ") ;

scanf ("%d", &num) ;

printf ("square of %d is %d", num, num * num) ;
(
(

printf ("\nWant to enter another number y/n");
scanf (" %c", &another) ;
}
}
[* odd loop using a while loop */
main()
{

char another='';
int num ;

while (‘another =='y")

{
printf ("Enter a number ") ;
scanf ("%d", &num) ;
printf ("square of %d is %d", num, num * num) ;
printf ("\nWant to enter another numbery/n");
scanf (" %c", &another) ;

}

118 Let Us C

The break Statement

We often come across situations where we want to jump out of a
loop instantly, without waiting to get back to the conditional test.
The keyword break allows us to do this. When break is
encountered inside any loop, control automatically passes to the
first statement after the loop. A break is usually associated with an
if. As an example, let’s consider the following example.

Example: Write a program to determine whether a number is
prime or not. A prime number is one, which is divisible only by 1
or itself.

All we have to do to test whether a number is prime or not, is to
divide it successively by all numbers from 2 to one less than itself.
If remainder of any of these divisions is zero, the number is not a
prime. If no division yields a zero then the number is a prime
number. Following program implements this logic.

main()

{

int num,i;

printf ("Enter a number ") ;
scanf ("%d", &num) ;

i=2;
while (i<=num-1)
{
if (num%i==0)
{
printf ("Not a prime number") ;
break ;

}

i++

Chapter 3: The Loop Control Structure 119

if (i==num)
printf ("Prime number") ;

}

In this program the moment num % i turns out to be zero, (i.e.
num is exactly divisible by i) the message “Not a prime number”
is printed and the control breaks out of the while loop. Why does
the program require the if statement after the while loop at all?
Well, there are two ways the control could have reached outside
the while loop:

(@) It jumped out because the number proved to be not a prime.
(b) The loop came to an end because the value of i became equal
to num.

When the loop terminates in the second case, it means that there
was no number between 2 to num - 1 that could exactly divide
num. That is, num is indeed a prime. If this is true, the program
should print out the message “Prime number”.

The keyword break, breaks the control only from the while in
which it is placed. Consider the following program, which
illustrates this fact.

main()

{
inti=1,j=1;

while (i++<=100)

{
while (j++ <= 200)

if (j==150)
break ;
else
printf ("%d %d\n", i,) ;

120 Let Us C

}
}

In this program when j equals 150, break takes the control outside
the inner while only, since it is placed inside the inner while.

The continue Statement

In some programming situations we want to take the control to the
beginning of the loop, bypassing the statements inside the loop,
which have not yet been executed. The keyword continue allows
us to do this. When continue is encountered inside any loop,
control automatically passes to the beginning of the loop.

A continue is usually associated with an if. As an example, let's
consider the following program.

main()
-
int i,j;

for (i=1:i<=2;i++)

{ for (j=1;j<=2;j++)
{
if(i==j)
continue ;
printf ("\n%d %d\n", i,) ;
}
}

}

The output of the above program would be...

12
21

Chapter 3: The Loop Control Structure 121

Note that when the value of i equals that of j, the continue
statement takes the control to the for loop (inner) bypassing rest of
the statements pending execution in the for loop (inner).

The do-while Loop

The do-while loop looks like this:

do

{
this ;
and this ;
and this ;
and this ;

} while (this condition is true) ;

There is a minor difference between the working of while and do-
while loops. This difference is the place where the condition is
tested. The while tests the condition before executing any of the
statements within the while loop. As against this, the do-while
tests the condition after having executed the statements within the
loop. Figure 3.5 would clarify the execution of do-while loop still
further.

122 Let Us C

START

initialise

>
P

body of loop

increment

Figure 3.5

This means that do-while would execute its statements at least
once, even if the condition fails for the first time. The while, on
the other hand will not execute its statements if the condition fails
for the first time. This difference is brought about more clearly by
the following program.

main()

while (4<1)
printf ("Hello there \n") ;

Chapter 3: The Loop Control Structure 123

Here, since the condition fails the first time itself, the printf() will
not get executed at all. Let's now write the same program using a
do-while loop.

main()
{
do
printf ("Hello there \n") ;
}while (4<1);
}

In this program the printf() would be executed once, since first
the body of the loop is executed and then the condition is tested.

There are some occasions when we want to execute a loop at least
once no matter what. This is illustrated in the following example:

break and continue are used with do-while just as they would be
in a while or a for loop. A break takes you out of the do-while
bypassing the conditional test. A continue sends you straight to
the test at the end of the loop.

124 Let Us C

Summary

(@)

(b)
(©)

(d)
(e)

The three type of loops available in C are for, while, and do-
while.

A break statement takes the execution control out of the loop.
A continue statement skips the execution of the statements
after it and takes the control to the beginning of the loop.

A do-while loop is used to ensure that the statements within
the loop are executed at least once.

The ++ operator increments the operand by 1, whereas, the --
operator decrements it by 1.

(F) The operators +=, -=, *=, /=, %= are compound assignment
operators. They modify the value of the operand to the left of
them.

Exercise
while Loop

[A] What would be the output of the following programs:

(@)

(b)

main()
L
int j;
while (j<=10)
printf ("\n%d", j) ;
j=j+1;
}
}
main()
L
inti=1,
while (i<=10);

printf ("\n%d", i) ;

Chapter 3: The Loop Control Structure

125

i++
}
}

main()
Lo
int j;
while (j<=10)

printf ("\n%d", j) ;
j=j+1;
}
}

main()
L
int x=1;
while (x==1)
{
Xx=x-1;
printf ("\n%d", x) ;
}
}

main()
-
int x=1;
while (x==1)
Xx=x-1;
printf ("\n%d", x) ;
}

main()

{

char x;

126

Let UsC

while (x=0; x <= 255 ; x++)

}

(@) ?ain()

printf ("\nAscii value %d Character %c", X, X) ;

int x=4,y,z;

y=-

X

Z=X-;
printf ("\n%d %d %d", X, y, 2) ;

}

(h) main()
{

int x=4,y=3,2;

Z=X--Y,
printf ("\n%d %d %d", X, y, z) ;

}

() main()

while (‘a' <'b')

}

() main()
{

printf ("\nmalyalam is a palindrome") ;

int i=10;
while (i=20)

}

(k) main()
{

printf ("\nA computer buff!") ;

int i;
while (i=10)

{

Chapter 3: The Loop Control Structure 127

printf ("\n%d", i) ;
i=i+1;
}
}

() main()
{
float x=1.1;
while (x==1.1)

printf ("\n%f", x) ;
x=x-01;
}
}

(m) main()

while ('1'<'2')
printf ("\nIn while loop") ;

}

(n) main()
{
char x;
for (x=0;x<=255; x++)
printf ("\nAscii value %d Character %c", x, X) ;

}

(0) main()
{

int x=4,y=

while (x>=0

{
X
y+t
if(x==y)

0,z;
)

128 Let Us C

continue ;
else
printf (“\n%d %d", x,y) ;
}
}

() Enain()
int x=4,y=0,z;
while (x>=0)
{
if (x==y)
break :
else
printf (“\n%d %d”, X,y) ;
X
y+t
}
}

[B] Attempt the following:

(a) Write a program to calculate overtime pay of 10 employees.
Overtime is paid at the rate of Rs. 12.00 per hour for every
hour worked above 40 hours. Assume that employees do not
work for fractional part of an hour.

(b) Write a program to find the factorial value of any number
entered through the keyboard.

(c) Two numbers are entered through the keyboard. Write a
program to find the value of one number raised to the power
of another.

(d) Write a program to print all the ASCII values and their
equivalent characters using a while loop. The ASCII values
vary from 0 to 255.

Chapter 3: The Loop Control Structure 129

(€)

(f)

(9)

(h)

(i)

Write a program to print out all Armstrong numbers between
1 and 500. If sum of cubes of each digit of the number is
equal to the number itself, then the number is called an
Armstrong number. For example, 153 =(1*1*1)+(5*5
*5)+(3*3*3)

Write a program for a matchstick game being played between
the computer and a user. Your program should ensure that the
computer always wins. Rules for the game are as follows:

— There are 21 matchsticks.

— The computer asks the player to pick 1, 2, 3, or 4
matchsticks.

— After the person picks, the computer does its
picking.

— Whoever is forced to pick up the last matchstick
loses the game.

Write a program to enter the numbers till the user wants and
at the end it should display the count of positive, negative and
zeros entered.

Write a program to find the octal equivalent of the entered
number.

Write a program to find the range of a set of numbers. Range
is the difference between the smallest and biggest number in
the list.

for, break, continue, do-while

[C]

What would be the output of the following programs:

main()

L
inti=0;
for (;i;)

130 Let Us C

printf ("\nHere is some mail for you") ;

}

(b) main()
—
int i;
for (i=1;i<=5; printf ("\n%d", 1)) ;
i++

}

() main()
{
inti=1,j=1;
for(;;)
{
if(i>5)
break :
else
j+=1
printf ("\n%d", j) ;
| +:J ;
}
}

(d) main()
Lo
int i;
for (i=1;i<=5; printf ("\n%c", 65));
i++
}

[D] Answer the following:

(@) The three parts of the loop expression in the for loop are:

the i expression
the t expression
the i expression

Chapter 3: The Loop Control Structure 131

(b)

(©)

(d)

(€)

(f)

An expression contains relational operators, assignment
operators, and arithmetic operators. In the absence of
parentheses, they will be evaluated in which of the following
order:

1. assignment, relational, arithmetic
2. arithmetic, relational, assignment
3. relational, arithmetic, assignment
4. assignment, arithmetic, relational

The break statement is used to exit from:

1. anif statement

2. afor loop

3. aprogram

4. the main() function

A do-while loop is useful when we want that the statements
within the loop must be executed:

1. Only once

2. At least once

3. More than once

4. None of the above

In what sequence the initialization, testing and execution of
body is done in a do-while loop

Initialization, execution of body, testing
Execution of body, initialization, testing
Initialization, testing, execution of body
None of the above

el N =

Which of the following is not an infinite loop.

1. inti=1; 2. for(;;);
while (1)
{i++-

s

132 Let Us C

(9)

[E]
(@)

(b)

(©)

(d)

(€)

3. intTrue =0, false ; 4. inty,x=0;
while (True) do
{ {
False=1; y=X;
} }while (x==0);

Which of the following statement is used to take the control to
the beginning of the loop?

1. exit

2. break

3. continue

4. None of the above
Attempt the following:

Write a program to print all prime numbers from 1 to 300.
(Hint: Use nested loops, break and continue)

Write a program to fill the entire screen with a smiling face.
The smiling face has an ASCII value 1.

Write a program to add first seven terms of the following
series using a for loop:

1 2 3
T at gt
Write a program to generate all combinations of 1, 2 and 3

using for loop.

According to a study, the approximate level of intelligence of
a person can be calculated using the following formula:

i=2+(y+05x)

Chapter 3: The Loop Control Structure 133

(f)

(@)

(h)

(i)

Write a program, which will produce a table of values of i, y
and x, where y varies from 1 to 6, and, for each value of y, x
varies from 5.5 to 12.5 in steps of 0.5.

Write a program to produce the following output:

ABCDEFGFEDCBA
ABCDEF FEDCBA
ABCDE FEDCBA
ABCD DCBA
ABC CBA
A B B A
A A

Write a program to fill the entire screen with diamond and
heart alternatively. The ASCII value for heart is 3 and that of
diamond is 4.

Write a program to print the multiplication table of the
number entered by the user. The table should get displayed in
the following form.

29*1=29

29*2="58

Write a program to produce the following output:

134 Let Us C

0

(k)

o

(m)

Write a program to produce the following output:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

A machine is purchased which will produce earning of Rs.
1000 per year while it lasts. The machine costs Rs. 6000 and
will have a salvage of Rs. 2000 when it is condemned. If 12
percent per annum can be earned on alternate investments
what would be the minimum life of the machine to make it a
more attractive investment compared to alternative
investment?

When interest compounds g times per year at an annual rate of
r % for n years, the principle p compounds to an amount a as per
the following formula

a=p(l+r/iq)M

Write a program to read 10 sets of p, r, n & g and calculate
the corresponding as.

The natural logarithm can be approximated by the following
series.

x—1 1[x—1j2 1(x—1)3 1(x—1)4
| s e = +....
X 20 X 2\ X 20 X
If x is input through the keyboard, write a program to
calculate the sum of first seven terms of this series.

4 The Case Control
Structure

¢ Decisions Using switch
The Tips and Traps
e switch Versus if-else Ladder
¢ The goto Keyword
e Summary
e Exercise

135

136 Let Us C

required to make a choice between a number of alternatives

rather than only one or two. For example, which school to join
or which hotel to visit or still harder which girl to marry (you
almost always end up making a wrong decision is a different
matter altogether!). Serious C programming is same; the choice we
are asked to make is more complicated than merely selecting
between two alternatives. C provides a special control statement
that allows us to handle such cases effectively; rather than using a
series of if statements. This control instruction is in fact the topic
of this chapter. Towards the end of the chapter we would also
study a keyword called goto, and understand why we should avoid
its usage in C programming.

I n real life we are often faced with situations where we are

Decisions Using switch

The control statement that allows us to make a decision from the
number of choices is called a switch, or more correctly a switch-
case-default, since these three keywords go together to make up
the control statement. They most often appear as follows:

switch (integer expression)
{
case constant 1 :
do this ;
case constant 2 :
do this ;
case constant 3 :
do this ;
default :
do this ;

}

The integer expression following the keyword switch is any C
expression that will yield an integer value. It could be an integer
constant like 1, 2 or 3, or an expression that evaluates to an

Chapter 4: The Case Control Structure 137

integer. The keyword case is followed by an integer or a character
constant. Each constant in each case must be different from all the
others. The “do this” lines in the above form of switch represent
any valid C statement.

What happens when we run a program containing a switch? First,
the integer expression following the keyword switch is evaluated.
The value it gives is then matched, one by one, against the
constant values that follow the case statements. When a match is
found, the program executes the statements following that case,
and all subsequent case and default statements as well. If no
match is found with any of the case statements, only the
statements following the default are executed. A few examples
will show how this control structure works.

Consider the following program:

main()
{
int i=2;
switch (i)
{
casel:
printf ("l am in case 1\n") ;
case?2:
printf (" amin case 2\n") ;
case 3:
printf ("I am in case 3\n") ;
default :
printf ("l am in default\n") ;
}
}

The output of this program would be:

| am in case 2

138 Let Us C

| amin case 3
| am in default

The output is definitely not what we expected! We didn’t expect
the second and third line in the above output. The program prints
case 2 and 3 and the default case. Well, yes. We said the switch
executes the case where a match is found and all the subsequent
cases and the default as well.

If you want that only case 2 should get executed, it is upto you to
get out of the switch then and there by using a break statement.
The following example shows how this is done. Note that there is
no need for a break statement after the default, since the control
comes out of the switch anyway.

main()
Eo
int 1=2;
switch (1)
{
casel:
printf ("l am in case 1\n") ;
break ;
case?2:
printf (" amin case 2\n") ;
break ;
case 3:
printf ("l am in case 3\n") ;
break :
default :
printf ("l am in default\n") ;
}
}

The output of this program would be:

| amin case 2

Chapter 4: The Case Control Structure 139

The operation of switch is shown below in the form of a flowchart
for a better understanding.

statement 1

statement 2

statement 3

statement 4

switch (choice)

{

v

case l:
statement 1 ;
break ;

> case 2.

statement 2 ;
break ;

> case 3.

statement 3 ;
break ;

> case 4 .

statement 4 ;

Figure 4.1

140 Let UsC

The Tips and Traps

A few useful tips about the usage of switch and a few pitfalls to be
avoided:

(@)

(b)

The earlier program that used switch may give you the wrong
impression that you can use only cases arranged in ascending
order, 1, 2, 3 and default. You can in fact put the cases in any
order you please. Here is an example of scrambled case order:

main()
{
int i=22;
switch (i)
{
case 121 :
printf ("l am in case 121\n") ;
break :
case7:
printf ("l am in case 7\n") ;
break ;
case 22 :
printf ("l am in case 22 \n") ;
break ;
default :
printf ("l am in default\n") ;
}
}

The output of this program would be:
I am in case 22

You are also allowed to use char values in case and switch as
shown in the following program:

main()

Chapter 4: The Case Control Structure

141

{

char c='x";

switch (¢)
{
case'v':
printf ("l amin case v\n");
break ;
case 'a':
printf ("l am in case a\n") ;
break :
case 'X':
printf ("l am in case x \n") ;
break ;
default :
printf ("l am in default \n") ;

}
}

The output of this program would be:

| am in case x

In fact here when we use ‘v’,

a’, ‘X’ they are actually

replaced by the ASCII values (118, 97, 120) of these character

constants.

(c) At times we may want to execute a common set of statements
for multiple cases. How this can be done is shown in the

following example.

main()

{

char ch;

printf ("Enter any of the alphabet a, b, orc ") ;

scanf ("%c", &ch) ;

142 Let Us C

(d)

(€)

switch (¢ch)
{
case'a':
case 'A":
printf ("a as in ashar") ;
break ;
case'b':
case 'B':
printf ("b as in brain") ;
break :
case'c':
case 'C':
printf ("c as in cookie") ;
break ;
default :
printf ("wish you knew what are alphabets") ;
}
}

Here, we are making use of the fact that once a case is
satisfied the control simply falls through the case till it
doesn’t encounter a break statement. That is why if an
alphabet a is entered the case ‘a’ is satisfied and since there
are no statements to be executed in this case the control
automatically reaches the next case i.e. case ‘A’ and executes
all the statements in this case.

Even if there are multiple statements to be executed in each
case there is no need to enclose them within a pair of braces
(unlike if, and else).

Every statement in a switch must belong to some case or the
other. If a statement doesn’t belong to any case the compiler
won’t report an error. However, the statement would never get
executed. For example, in the following program the printf()
never goes to work.

Chapter 4: The Case Control Structure 143

(f)

(@)

main()

{

it i,

printf ("Enter value of i") ;
scanf ("%d”, &i) ;

switch (i)
{
printf ("Hello") ;
casel:
j=10;
break :
case 2:
j=20;
break :

}
}

If we have no default case, then the program simply falls
through the entire switch and continues with the next
instruction (if any,) that follows the closing brace of switch.

Is switch a replacement for if? Yes and no. Yes, because it
offers a better way of writing programs as compared to if, and
no because in certain situations we are left with no choice but
to use if. The disadvantage of switch is that one cannot have a
case in a switch which looks like:

casei<=20:

All that we can have after the case is an int constant or a char
constant or an expression that evaluates to one of these
constants. Even a float is not allowed.

The advantage of switch over if is that it leads to a more
structured program and the level of indentation is manageable,

144 Let Us C

(h)

(i)

@)

(k)

more so if there are multiple statements within each case of a
switch.

We can check the value of any expression in a switch. Thus
the following switch statements are legal.

switch (i+j*k)
switch (23+45% 4 *k)
switch (a<4&&b>7)

Expressions can also be used in cases provided they are
constant expressions. Thus case 3 + 7 is correct, however,
case a + b is incorrect.

The break statement when used in a switch takes the control
outside the switch. However, use of continue will not take
the control to the beginning of switch as one is likely to
believe.

In principle, a switch may occur within another, but in
practice it is rarely done. Such statements would be called
nested switch statements.

The switch statement is very useful while writing menu
driven programs. This aspect of switch is discussed in the
exercise at the end of this chapter.

switch Versus if-else Ladder

There are some things that you simply cannot do with a switch.
These are:

(a)
(b)

(©

A float expression cannot be tested using a switch

Cases can never have variable expressions (for example it is
wrong to say case a +3 ;)

Multiple cases cannot use same expressions. Thus the
following switch is illegal:

Chapter 4: The Case Control Structure 145

switch (a)

{

case 3:

casel+2:

(@), (b) and (c) above may lead you to believe that these are
obvious disadvantages with a switch, especially since there
weren’t any such limitations with if-else. Then why use a switch at
all? For speed—switch works faster than an equivalent if-else
ladder. How come? This is because the compiler generates a jump
table for a switch during compilation. As a result, during
execution it simply refers the jump table to decide which case
should be executed, rather than actually checking which case is
satisfied. As against this, if-elses are slower because they are
evaluated at execution time. A switch with 10 cases would work
faster than an equivalent if-else ladder. Also, a switch with 2 cases
would work slower than if-else ladder. Why? If the 10" case is
satisfied then jump table would be referred and statements for the
10™ case would be executed. As against this, in an if-else ladder 10
conditions would be evaluated at execution time, which makes it
slow. Note that a lookup in the jump table is faster than evaluation
of a condition, especially if the condition is complex.

If on the other hand the conditions in the if-else were simple and
less in number then if-else would work out faster than the lookup
mechanism of a switch. Hence a switch with two cases would
work slower than an equivalent if-else. Thus, you as a programmer
should take a decision which of the two should be used when.

The goto Keyword

Avoid goto keyword! They make a C programmer’s life miserable.
There is seldom a legitimate reason for using goto, and its use is

146 Let UsC

one of the reasons that programs become unreliable, unreadable,
and hard to debug. And yet many programmers find goto
seductive.

In a difficult programming situation it seems so easy to use a goto
to take the control where you want. However, almost always, there
is a more elegant way of writing the same program using if, for,
while and switch. These constructs are far more logical and easy
to understand.

The big problem with gotos is that when we do use them we can
never be sure how we got to a certain point in our code. They
obscure the flow of control. So as far as possible skip them. You
can always get the job done without them. Trust me, with good
programming skills goto can always be avoided. This is the first
and last time that we are going to use goto in this book. However,
for sake of completeness of the book, the following program
shows how to use goto.

main()

{

int goals ;

printf ("Enter the number of goals scored against India") ;
scanf ("%d", &goals) ;

if (goals <=5)
goto SoS ;
else

printf ("About time soccer players learnt C\n") ;
printf ("and said goodbye! adieu! to soccer") ;
exit() ; /* terminates program execution */

}

SOS
printf ("To err is human!") ;

Chapter 4: The Case Control Structure 147

}

And here are two sample runs of the program...

Enter the number of goals scored against India 3
To err is human!

Enter the number of goals scored against India 7
About time soccer players learnt C

and said goodbye! adieu! to soccer

A few remarks about the program would make the things clearer.

— If the condition is satisfied the goto statement transfers control

to the label ‘sos’, causing printf() following sos to be
executed.

— The label can be on a separate line or on the same line as the
statement following it, as in,

sos ; printf ("To erris human!") ;
— Any number of gotos can take the control to the same label.

— The exit() function is a standard library function which
terminates the execution of the program. It is necessary to use
this function since we don't want the statement

printf ("To erris human!")

to get executed after execution of the else block.

— The only programming situation in favour of using goto is
when we want to take the control out of the loop that is
contained in several other loops. The following program
illustrates this.

148 Let UsC

main()

{
it i,j,k;

for(i=1;i<=3;i++)
{
for(j=1;j<=3;j++)

for(k=1;k<=3;k++)
{
if(i==3&&j==3&&k==3)
goto out ;
else
printf ("%d %d %d\n", i, j, k) ;
}
}
}

out :
printf ("Out of the loop at last!") ;

}

Go through the program carefully and find out how it works. Also
write down the same program without using goto.

Summary

(@) When we need to choose one among number of alternatives, a
switch statement is used.

(b) The switch keyword is followed by an integer or an
expression that evaluates to an integer.

(c) The case keyword is followed by an integer or a character
constant.

(d) The control falls through all the cases unless the break
statement is given.

(e) The usage of the goto keyword should be avoided as it usually
violets the normal flow of execution.

Chapter 4: The Case Control Structure 149

Exercise

[A] What would be the output of the following programs:

(@ main()
{
char suite =3;
switch (suite)
{
casel:
printf ("\nDiamond") ;
case 2
printf ("\nSpade") ;
default :
printf ("\nHeart") ;

printf ("\nl thought one wears a suite") ;

}

(b) main()
{

int c=3;

switch (¢)
{
case 'v':
printf ("l amin case v\n");
break ;
case 3:
printf ("l am in case 3\n") ;
break :
case 12:
printf ("l am in case 12 \n") ;
break ;
default :
printf ("l am in default \n") ;

150 Let Us C

}

() main()
{
int k,j=2;
switch (k=j+1)
{
case0:
printf ("\nTailor") ;
casel:
printf ("\nTutor") ;
case?2:
printf ("\nTramp") ;
default :
printf ("\nPure Simple Egghead!") ;

}
}

(d) main()
{
inti=0;
switch (i)
{
case0:
printf ("\nCustomers are dicey") ;
casel:
printf ("\nMarkets are pricey") ;
case?2:
printf ("\ninvestors are moody") ;
case 3:
printf ("\nAt least employees are good") ;

}
}

() main()
{
int k;
floatj=2.0;

Chapter 4: The Case Control Structure 151

switch (k=j+1)

{
case 3:
printf ("\nTrapped") ;
break ;
default :
printf ("\nCaught!") ;
}
}
() main()
{
int ch="a"+'b";
switch (ch)
{
case'a':
case'b':
printf ("\nYou entered b") ;
case 'A':
printf ("\na as in ashar") ;
case'b' +'a'":
printf ("\nYou entered a and b") ;
}
}
(@ main()
{
inti=1;
switch (i-2)
{
case-1:
printf ("\nFeeding fish") ;
case0:
printf ("\nWeeding grass") ;
casel:
printf ("\nmending roof") ;
default :

printf ("\nJust to survive") ;

152 Let Us C

}
}

[B] Point out the errors, if any, in the following programs:

(@ main()
{
int suite=1;
switch (suite) ;
{
case0;
printf ("\nClub") ;
casel;
printf ("\nDiamond") ;
}
}

(b) main()
{
int temp ;
scanf ("%d", &temp) ;
switch (temp)

{
case (temp<=20):
printf ("\nOoooooohhhh! Damn cool'™) ;
case (temp > 20 && temp<=30):
printf ("\nRain rain here again!") ;
case (temp > 30 && temp <=40) :
printf ("\nWish | am on Everest") ;
default :
printf ("\nGood old nagpur weather") ;
}
}
() main()
{
float a=3.5;

switch (a)

Chapter 4: The Case Control Structure 153

case 0.5:
printf ("\nThe art of C") ;
break ;

case 1.5:
printf ("\nThe spirit of C") ;
break ;

case 2.5:
printf ("\nSee through C") ;
break ;

case 3.5:
printf ("\nSimply ¢") ;

}

}

(d) main()
{
inta=3,b=4,c;
c=bh-a;
switch (¢)

casel||2:
printf ("God give me an opportunity to change things") ;
break ;

caseal|b:
printf ("God give me an opportunity to run my show") ;
break :

}
}

[C] Write a menu driven program which has following options:

1. Factorial of a number.
2. Prime or not

3. Odd or even

4. Exit

154

Let UsC

Make use of switch statement.
The outline of this program is given below:

* A menu driven program */
main()
{
int choice ;
while (1)
{
printf ("\n1. Factorial") ;
printf ("\n2. Prime") ;
printf ("\n3. Odd/Even");
printf ("\n4. Exit");
printf ("\nYour choice? ") ;
scanf ("%d", &choice) ;

switch (choice)
{
casel:
I* logic for factorial of a number */
break ;
case?2:
I* logic for deciding prime number */
break ;
case 3:
I* logic for odd/even */
break ;
case 4:
exit() ;

Note:

Chapter 4: The Case Control Structure 155

The statement while (1) puts the entire logic in an infinite loop.
This is necessary since the menu must keep reappearing on the
screen once an item is selected and an appropriate action taken.

[D] Write a program which to find the grace marks for a student
using switch. The user should enter the class obtained by the
student and the number of subjects he has failed in.

— If the student gets first class and the number of subjects he
failed in is greater than 3, then he does not get any grace.
If the number of subjects he failed in is less than or equal
to 3 then the grace is of 5 marks per subject.

— If the student gets second class and the number of subjects
he failed in is greater than 2, then he does not get any
grace. If the number of subjects he failed in is less than or
equal to 2 then the grace is of 4 marks per subject.

— If the student gets third class and the number of subjects
he failed in is greater than 1, then he does not get any
grace. If the number of subjects he failed in is equal to 1
then the grace is of 5 marks per subject

156 Let Us C

5 Functions &
Pointers

What is a Function
Why Use Functions
Passing Values between Functions
Scope Rule of Functions
Calling Convention
One Dicey Issue
Advanced Features of Functions
Function Declaration and Prototypes
Call by Value and Call by Reference
An Introduction to Pointers
Pointer Notation
Back to Function Calls
Conclusions
Recursion
Adding Functions to the Library

e Summary

Exercise

157

158 Let Us C

so many things. Man is an intelligent species, but still

cannot perform all of life’s tasks all alone. He has to rely
on others. You may call a mechanic to fix up your bike, hire a
gardener to mow your lawn, or rely on a store to supply you
groceries every month. A computer program (except for the
simplest one) finds itself in a similar situation. It cannot handle all
the tasks by itself. Instead, it requests other program like
entities—called ‘functions’ in C—to get its tasks done. In this
chapter we will study these functions. We will look at a variety of
features of these functions, starting with the simplest one and then
working towards those that demonstrate the power of C functions.

Knowingly or unknowingly we rely on so many persons for

What is a Function

A function is a self-contained block of statements that perform a
coherent task of some kind. Every C program can be thought of as
a collection of these functions. As we noted earlier, using a
function is something like hiring a person to do a specific job for
you. Sometimes the interaction with this person is very simple;
sometimes it’s complex.

Suppose you have a task that is always performed exactly in the
same way—say a bimonthly servicing of your motorbike. When
you want it to be done, you go to the service station and say, “It’s
time, do it now”. You don’t need to give instructions, because the
mechanic knows his job. You don’t need to be told when the job is
done. You assume the bike would be serviced in the usual way, the
mechanic does it and that’s that.

Let us now look at a simple C function that operates in much the
same way as the mechanic. Actually, we will be looking at two
things—a function that calls or activates the function and the
function itself.

Chapter 5: Functions & Pointers 159

main()
{
message() ;
printf ("\nCry, and you stop the monotony!") ;
}
message()
{
printf ("\nSmile, and the world smiles with you...") ;
}

And here’s the output...

Smile, and the world smiles with you...
Cry, and you stop the monotony!

Here, main() itself is a function and through it we are calling the
function message(). What do we mean when we say that main()
‘calls’ the function message()? We mean that the control passes to
the function message(). The activity of main() is temporarily
suspended; it falls asleep while the message() function wakes up
and goes to work. When the message() function runs out of
statements to execute, the control returns to main(), which comes
to life again and begins executing its code at the exact point where
it left off. Thus, main() becomes the ‘calling’ function, whereas
message() becomes the “called’ function.

If you have grasped the concept of ‘calling’ a function you are
prepared for a call to more than one function. Consider the
following example:

main()
{
printf ("\nl am in main") ;
italy() ;
brazil() ;
argentina() ;

160 Let Us C

italy()

printf ("\nl am in italy") ;

}
brazil()
{
printf ("\nl am in brazil") ;
}
argentina()
{
printf ("\nl am in argentina") ;
}

The output of the above program when executed would be as
under:

| am in main

| am in italy

| am in brazil

| am in argentina

From this program a number of conclusions can be drawn:

— Any C program contains at least one function.

— If a program contains only one function, it must be main().

— If a C program contains more than one function, then one (and
only one) of these functions must be main(), because program

execution always begins with main().

— There is no limit on the number of functions that might be
present in a C program.

— Each function in a program is called in the sequence specified
by the function calls in main().

Chapter 5: Functions & Pointers 161

— After each function has done its thing, control returns to
main().When main() runs out of function calls, the program
ends.

As we have noted earlier the program execution always begins
with main(). Except for this fact all C functions enjoy a state of
perfect equality. No precedence, no priorities, nobody is nobody’s
boss. One function can call another function it has already called
but has in the meantime left temporarily in order to call a third
function which will sometime later call the function that has called
it, if you understand what | mean. No? Well, let’s illustrate with an
example.

main()
printf ("\nl am in main") ;

italy() ;
printf ("\nl am finally back in main") ;

}
italy()
{
printf ("\nl am in italy") ;
brazil() ;
printf ("\nl am back in italy") ;
}
brazil()
printf ("\nl am in brazil") ;
argentina() ;
argentina()
printf ("\nl am in argentina") ;
}

And the output would look like...

162 Let Us C

[am in main

I am in italy

| am in brazil

| am in argentina

| am back in italy

| am finally back in main

Here, main() calls other functions, which in turn call still other
functions. Trace carefully the way control passes from one
function to another. Since the compiler always begins the program
execution with main(), every function in a program must be
called directly or indirectly by main(). In other words, the main()
function drives other functions.

Let us now summarize what we have learnt so far.

(@) C program is a collection of one or more functions.
(b) A function gets called when the function name is followed by
a semicolon. For example,

main()
{
argentina() ;

}

(c) A function is defined when function name is followed by a
pair of braces in which one or more statements may be
present. For example,

argentina()

{
statement 1 ;
statement 2 ;
statement 3 ;

}

Chapter 5: Functions & Pointers 163

(d) Any function can be called from any other function. Even

(€)

()

main() can be called from other functions. For example,

main()

{

message() ;

}

message()

{
printf ("\nCan't imagine life without C") ;
main() ;

}
A function can be called any number of times. For example,

main()

{
message() ;
message() ;

}

message()

printf ("\nJewel Thief!!") ;
}

The order in which the functions are defined in a program and
the order in which they get called need not necessarily be
same. For example,

main()

{
messagel() ;
message2() ;

}

message?2()

{
printf ("\nBut the butter was bitter") ;

164 Let Us C

(@)

(h)

(i)

}

messagel()

{
}

Here, even though messagel() is getting called before
message2(), still, messagel() has been defined after
message2(). However, it is advisable to define the functions
in the same order in which they are called. This makes the
program easier to understand.

printf ("\nMary bought some butter") ;

A function can call itself. Such a process is called ‘recursion’.
We would discuss this aspect of C functions later in this
chapter.

A function can be called from other function, but a function
cannot be defined in another function. Thus, the following
program code would be wrong, since argentina() is being
defined inside another function, main().

main()

{
printf ("\nl am in main") ;
argentina()

printf ("\nl am in argentina") ;

}
}

There are basically two types of functions:

Library functions Ex. printf(), scanf() etc.
User-defined functions Ex. argentina(), brazil() etc.

As the name suggests, library functions are nothing but
commonly required functions grouped together and stored in

Chapter 5: Functions & Pointers 165

what is called a Library. This library of functions is present on
the disk and is written for us by people who write compilers
for us. Almost always a compiler comes with a library of
standard functions. The procedure of calling both types of
functions is exactly same.

Why Use Functions

Why write separate functions at all? Why not squeeze the entire
logic into one function, main()? Two reasons:

(@ Writing functions avoids rewriting the same code over and
over. Suppose you have a section of code in your program
that calculates area of a triangle. If later in the program you
want to calculate the area of a different triangle, you won’t
like it if you are required to write the same instructions all
over again. Instead, you would prefer to jump to a “section of
code’ that calculates area and then jump back to the place
from where you left off. This section of code is nothing but a
function.

(b) Using functions it becomes easier to write programs and keep
track of what they are doing. If the operation of a program can
be divided into separate activities, and each activity placed in
a different function, then each could be written and checked
more or less independently. Separating the code into modular
functions also makes the program easier to design and
understand.

What is the moral of the story? Don’t try to cram the entire logic in
one function. It is a very bad style of programming. Instead, break
a program into small units and write functions for each of these
isolated subdivisions. Don’t hesitate to write functions that are
called only once. What is important is that these functions perform
some logically isolated task.

166 Let Us C

Passing Values between Functions

The functions that we have used so far haven’t been very flexible.
We call them and they do what they are designed to do. Like our
mechanic who always services the motorbike in exactly the same
way, we haven’t been able to influence the functions in the way
they carry out their tasks. It would be nice to have a little more
control over what functions do, in the same way it would be nice
to be able to tell the mechanic, “Also change the engine oil, | am
going for an outing”. In short, now we want to communicate
between the ‘calling’ and the ‘called” functions.

The mechanism used to convey information to the function is the
‘argument’. You have unknowingly used the arguments in the
printf() and scanf() functions; the format string and the list of
variables used inside the parentheses in these functions are
arguments. The arguments are sometimes also called ‘parameters’.

Consider the following program. In this program, in main() we
receive the values of a, b and c through the keyboard and then
output the sum of a, b and c. However, the calculation of sum is
done in a different function called calsum(). If sum is to be
calculated in calsum() and values of a, b and c are received in
main(), then we must pass on these values to calsum(), and once
calsum() calculates the sum we must return it from calsum()
back to main().

* Sending and receiving values between functions */
main()

{

int a, b, c,sum;

printf ("\nEnter any three numbers ") ;
scanf ("%d %d %d", &a, &b, &c) ;

sum =calsum (a, b, c);

Chapter 5: Functions & Pointers 167

}

printf ("\nSum = %d", sum) ;

calsum (x,v,2)
int x,y,2;

{

}

int d;

d=x+y+z;
return (d);

And here is the output...

Enter any three numbers 10 20 30
Sum =60

There are a number of things to note about this program:

(@)

(b)

In this program, from the function main() the values of a, b
and c are passed on to the function calsum(), by making a
call to the function calsum() and mentioning a, b and c in the
parentheses:

sum = calsum (a, b, c);

In the calsum() function these values get collected in three
variables x, y and z:

calsum (x,v,2)
int x,y,2;

The variables a, b and c are called ‘actual arguments’,
whereas the variables x, y and z are called *‘formal
arguments’. Any number of arguments can be passed to a
function being called. However, the type, order and number of
the actual and formal arguments must always be same.

168 Let Us C

(©)

(d)

Instead of using different variable names x, y and z, we could
have used the same variable names a, b and c. But the
compiler would still treat them as different variables since
they are in different functions.

There are two methods of declaring the formal arguments.
The one that we have used in our program is known as
Kernighan and Ritchie (or just K & R) method.

calsum (x,v,2)
int x,y,2;

Another method is,

calsum (int x, int y,int z)

This method is called ANSI method and is more commonly
used these days.

In the earlier programs the moment closing brace (}) of the
called function was encountered the control returned to the
calling function. No separate return statement was necessary
to send back the control.

This approach is fine if the called function is not going to
return any meaningful value to the calling function. In the
above program, however, we want to return the sum of x, y
and z. Therefore, it is necessary to use the return statement.

The return statement serves two purposes:

(1) On executing the return statement it immediately
transfers the control back to the calling program.

(2) It returns the value present in the parentheses after
return, to th3e calling program. In the above program
the value of sum of three numbers is being returned.

Chapter 5: Functions & Pointers 169

(e) There is no restriction on the number of return statements

()

that may be present in a function. Also, the return statement
need not always be present at the end of the called function.
The following program illustrates these facts.

fun()
{

char ch;

printf ("\nEnter any alphabet") ;
scanf ("%c", &ch) ;

if (ch>=65&&ch<=90)
return (ch);

else
return (ch +32);

In this function different return statements will be executed
depending on whether ch is capital or not.

Whenever the control returns from a function some value is
definitely returned. If a meaningful value is returned then it
should be accepted in the calling program by equating the
called function to some variable. For example,

sum = calsum (a, b, ¢);

(9) All the following are valid return statements.

return (a);
return (23);
return (12.34);
return ;

170 Let Us C

(h)

(i)

@)

In the last statement a garbage value is returned to the calling
function since we are not returning any specific value. Note
that in this case the parentheses after return are dropped.

If we want that a called function should not return any value,
in that case, we must mention so by using the keyword void
as shown below.

void display()

{
printf ("\nHeads I win...") ;
printf ("\nTails you lose") ;

}

A function can return only one value at a time. Thus, the
following statements are invalid.

return (a,b);
return (x, 12) ;

There is a way to get around this limitation, which would be
discussed later in this chapter when we learn pointers.

If the value of a formal argument is changed in the called
function, the corresponding change does not take place in the
calling function. For example,

main()
L
int a=30;
fun(a);
printf ("\n%d", a) ;
}

fun (iint b)

{
b=60;

Chapter 5: Functions & Pointers 171

printf ("\n%d", b)) ;
}

The output of the above program would be:

60
30

Thus, even though the value of b is changed in fun(), the
value of a in main() remains unchanged. This means that
when values are passed to a called function the values present
in actual arguments are not physically moved to the formal
arguments; just a photocopy of values in actual argument is
made into formal arguments.

Scope Rule of Functions

Look at the following program

main()
{
inti=20;
display (i) ;
}

display (int j)
{

int k=35;

printf ("\n%d", j) ;

printf ("\n%d", k) ;
}

In this program is it necessary to pass the value of the variable i to
the function display()? Will it not become automatically available
to the function display()? No. Because by default the scope of a
variable is local to the function in which it is defined. The presence

172 Let Us C

of i is known only to the function main() and not to any other
function. Similarly, the variable k is local to the function
display() and hence it is not available to main(). That is why to
make the value of i available to display() we have to explicitly
pass it to display(). Likewise, if we want k to be available to
main() we will have to return it to main() using the return
statement. In general we can say that the scope of a variable is
local to the function in which it is defined.

Calling Convention
Calling convention indicates the order in which arguments are
passed to a function when a function call is encountered. There are
two possibilities here:

(@) Arguments might be passed from left to right.
(b) Arguments might be passed from right to left.

C language follows the second order.

Consider the following function call:

fun(a, b, c,d);

In this call it doesn’t matter whether the arguments are passed
from left to right or from right to left. However, in some function

call the order of passing arguments becomes an important
consideration. For example:

inta=1;
printf ("%d %d %d", a, ++a, at++) ;

It appears that this printf() would output 1 2 3.

This however is not the case. Surprisingly, it outputs 3 3 1. This is
because C’s calling convention is from right to left. That is, firstly

Chapter 5: Functions & Pointers 173

1 is passed through the expression a++ and then a is incremented
to 2. Then result of ++a is passed. That is, a is incremented to 3
and then passed. Finally, latest value of a, i.e. 3, is passed. Thus in
right to left order 1, 3, 3 get passed. Once printf() collects them it
prints them in the order in which we have asked it to get them
printed (and not the order in which they were passed). Thus 3 3 1
gets printed.

One Dicey lIssue
Consider the following function calls:

#include <conio.h>
clrser () ;

gotoxy (10,20);
ch=getch(a);

Here we are calling three standard library functions. Whenever we
call the library functions we must write their prototype before
making the call. This helps the compiler in checking whether the
values being passed and returned are as per the prototype
declaration. But since we don’t define the library functions (we
merely call them) we may not know the prototypes of library
functions. Hence when the library of functions is provided a set of
“.h* files is also provided. These files contain the prototypes of
library functions. But why multiple files? Because the library
functions are divided into different groups and one file is provided
for each group. For example, prototypes of all input/output
functions are provided in the file ‘stdio.h’, prototypes of all
mathematical functions are provided in the file *‘math.h’, etc.

On compilation of the above code the compiler reports all errors
due to the mismatch between parameters in function call and their
corresponding prototypes declared in the file ‘conio.h’. You can
even open this file and look at the prototypes. They would appear
as shown below:

174 Let Us C

void clrscr() ;
void gotoxy (int, int) ;
int getch() ;

Now consider the following function calls:

#include <stdio.h>
int i=10,j=20;

printf ("%d %d %d ", i,]) ;
printf ("%d", i, j) ;

The above functions get successfully compiled even though there
is @ mismatch in the format specifiers and the variables in the list.
This is because printf() accepts variable number of arguments
(sometimes 2 arguments, sometimes 3 arguments, etc.), and even
with the mismatch above the call still matches with the prototype
of printf() present in ‘stdio.h’. At run-time when the first printf()
is executed, since there is no variable matching with the last
specifier %d, a garbage integer gets printed. Similarly, in the
second printf() since the format specifier for j has not been
mentioned its value does not get printed.

Advanced Features of Functions

With a sound basis of the preliminaries of C functions, let us now
get into their intricacies. Following advanced topics would be
considered here.

(@) Function Declaration and Prototypes
(b) Calling functions by value or by reference
(c) Recursion

Let us understand these features one by one.

Chapter 5: Functions & Pointers 175

Function Declaration and Prototypes

Any C function by default returns an int value. More specifically,
whenever a call is made to a function, the compiler assumes that
this function would return a value of the type int. If we desire that a
function should return a value other than an int, then it is necessary
to explicitly mention so in the calling function as well as in the
called function. Suppose we want to find out square of a number
using a function. This is how this simple program would look like:

main()

{

float a, b ;

printf ("\nEnter any number ") ;
scanf ("%f", &a) ;

b=square(a);
printf ("\nSquare of %f is %f", a, b) ;

}

square (float x)

{ float y;
Yy=X*X;

} return (y);

And here are three sample runs of this program...

Enter any number 3
Square of 3 is 9.000000
Enter any number 1.5
Square of 1.5 is 2.000000
Enter any number 2.5
Square of 2.5 is 6.000000

176 Let Us C

The first of these answers is correct. But square of 1.5 is definitely
not 2. Neither is 6 a square of 2.5. This happened because any C
function, by default, always returns an integer value. Therefore,
even though the function square() calculates the square of 1.5 as
2.25, the problem crops up when this 2.25 is to be returned to
main(). square() is not capable of returning a float value. How
do we overcome this? The following program segment illustrates
how to make square() capable of returning a float value.

main()

{
float square (float) ;
float a, b;

printf ("\nEnter any number ") ;
scanf ("%f", &a) ;

b=square(a);
printf ("\nSquare of %f is %f", a, b) ;

}

float square (float x)

{
float y;
y=X*X;
return(y);

}

And here is the output...

Enter any number 1.5
Square of 1.5 is 2.250000
Enter any number 2.5
Square of 2.5 is 6.250000

Chapter 5: Functions & Pointers 177

Now the expected answers i.e. 2.25 and 6.25 are obtained. Note
that the function square() must be declared in main() as

float square (float) ;

This statement is often called the prototype declaration of the
square() function. What it means is square() is a function that
receives a float and returns a float. We have done the prototype
declaration in main() because we have called it from main().
There is a possibility that we may call square(') from several other
functions other than main(). Does this mean that we would need
prototype declaration of square() in all these functions. No, in
such a case we would make only one declaration outside all the
functions at the beginning of the program.

In practice you may seldom be required to return a value other
than an int, but just in case you are required to, employ the above
method. In some programming situations we want that a called
function should not return any value. This is made possible by
using the keyword void. This is illustrated in the following
program.

main()

{
void gospel() ;
gospel() ;

void gospel()
{
printf ("\nViruses are electronic bandits...") ;
printf ("\nwho eat nuggets of information...") ;
printf ("\nand chunks of bytes...") ;
(

printf ("\nwhen you least expect...") ;

178 Let Us C

Here, the gospel(') function has been defined to return void; means
it would return nothing. Therefore, it would just flash the four
messages about viruses and return the control back to the main()
function.

Call by Value and Call by Reference

By now we are well familiar with how to call functions. But, if you
observe carefully, whenever we called a function and passed
something to it we have always passed the ‘values’ of variables to
the called function. Such function calls are called ‘calls by value’.
By this what we mean is, on calling a function we are passing
values of variables to it. The examples of call by value are shown
below:

sum =calsum (a, b, c);
f=factr(a);

We have also learnt that variables are stored somewhere in
memory. So instead of passing the value of a variable, can we not
pass the location number (also called address) of the variable to a
function? If we were able to do so it would become a ‘call by
reference’. What purpose a ‘call by reference’ serves we would
find out a little later. First we must equip ourselves with
knowledge of how to make a “call by reference’. This feature of C
functions needs at least an elementary knowledge of a concept
called “pointers’. So let us first acquire the basics of pointers after
which we would take up this topic once again.

An Introduction to Pointers

Which feature of C do beginners find most difficult to understand?
The answer is easy: pointers. Other languages have pointers but
few use them so frequently as C does. And why not? It is C’s
clever use of pointers that makes it the excellent language it is.

Chapter 5: Functions & Pointers 179

The difficulty beginners have with pointers has much to do with
C’s pointer terminology than the actual concept. For instance,
when a C programmer says that a certain variable is a “pointer”,
what does that mean? It is hard to see how a variable can point to
something, or in a certain direction.

It is hard to get a grip on pointers just by listening to programmer’s
jargon. In our discussion of C pointers, therefore, we will try to
avoid this difficulty by explaining pointers in terms of

programming concepts we already understand. The first thing we
want to do is explain the rationale of C’s pointer notation.

Pointer Notation

Consider the declaration,

inti=3;

This declaration tells the C compiler to:

(@) Reserve space in memory to hold the integer value.
(b) Associate the name i with this memory location.

(c) Store the value 3 at this location.

We may represent i’s location in memory by the following
memory map.

i — location name

3 — value at location

65524 — location number

Figure 5.1

180 Let Us C

We see that the computer has selected memory location 65524 as
the place to store the value 3. The location number 65524 is not a
number to be relied upon, because some other time the computer
may choose a different location for storing the value 3. The
important point is, i’s address in memory is a number.

We can print this address number through the following program:

main()

{
inti=3;
printf ("\nAddress of i = %u", &i) ;
printf ("\nValue of i = %d", i) ;

}

The output of the above program would be:

Address of i = 65524
Valueofi=3

Look at the first printf() statement carefully. ‘&’ used in this
statement is C’s ‘address of” operator. The expression &i returns
the address of the variable i, which in this case happens to be
65524. Since 65524 represents an address, there is no question of a
sign being associated with it. Hence it is printed out using %ou,
which is a format specifier for printing an unsigned integer. We
have been using the ‘&’ operator all the time in the scanf()
statement.

The other pointer operator available in C is “**, called ‘value at
address’ operator. It gives the value stored at a particular address.
The ‘value at address’ operator is also called ‘indirection’
operator.

Observe carefully the output of the following program:

Chapter 5: Functions & Pointers 181

main()

{
inti=3;

printf ("\nAddress of i = %u", &i) ;

printf ("\nValue of i = %d", i) ;

printf ("\nValue of i = %d", *(&i));
}

The output of the above program would be:

Address of i = 65524
Valueofi=3
Valueofi=3

Note that printing the value of *(&i) is same as printing the value
of i

The expression &i gives the address of the variable i. This address
can be collected in a variable, by saying,

j=&i;

But remember that j is not an ordinary variable like any other
integer variable. It is a variable that contains the address of other
variable (i in this case). Since j is a variable the compiler must

provide it space in the memory. Once again, the following memory
map would illustrate the contents of i and j.

[i
3 | 65524 |

65524 65522

Figure 5.2

182 Let Us C

As you can see, i’s value is 3 and j’s value is i’s address.

But wait, we can’t use j in a program without declaring it. And
since j is a variable that contains the address of i, it is declared as,
int *;

This declaration tells the compiler that j will be used to store the
address of an integer value. In other words j points to an integer.
How do we justify the usage of * in the declaration,

int *j;
Let us go by the meaning of *. It stands for ‘value at address’.
Thus, int *j would mean, the value at the address contained in j is

an int.

Here is a program that demonstrates the relationships we have
been discussing.

main()

{
inti=3;
int *;
j=&i;

printf ("\nAddress of i = %u", &) ;
printf ("\nAddress of i = %u", j) ;
printf ("\nAddress of j = %u", &) ;
printf ("\nValue of j = %u",) ;
printf ("\nValue of i = %d", i) ;
printf ("\nValue of i = %d", *(&i));
printf ("\nValue of i = %d", ¥) ;

}

The output of the above program would be:

Chapter 5: Functions & Pointers 183

Address of i = 65524
Address of i = 65524
Address of j = 65522
Value of j = 65524

Valueofi=3
Valueofi=3
Valueofi=3

Work through the above program carefully, taking help of the
memory locations of i and j shown earlier. This program
summarizes everything that we have discussed so far. If you don’t
understand the program’s output, or the meanings of &i, &j, *j
and *(&i), re-read the last few pages. Everything we say about C
pointers from here onwards will depend on your understanding
these expressions thoroughly.

Look at the following declarations,

int *alpha ;
char *ch;
float *s;

Here, alpha, ch and s are declared as pointer variables, i.e.
variables capable of holding addresses. Remember that, addresses
(location nos.) are always going to be whole numbers, therefore
pointers always contain whole numbers. Now we can put these two
facts together and say—pointers are variables that contain
addresses, and since addresses are always whole numbers, pointers
would always contain whole numbers.

The declaration float *s does not mean that s is going to contain a
floating-point value. What it means is, s is going to contain the
address of a floating-point value. Similarly, char *ch means that
ch is going to contain the address of a char value. Or in other
words, the value at address stored in ch is going to be a char.

184 Let Us C

The concept of pointers can be further extended. Pointer, we know
is a variable that contains address of another variable. Now this
variable itself might be another pointer. Thus, we now have a
pointer that contains another pointer’s address. The following
example should make this point clear.

main()

{
int i=3,%,*k;
j=&i;
k=&;

}

The output of the above program would be:
Address of i = 65524

Address of i = 65524
Address of i = 65524
Address of j = 65522
Address of j = 65522
Address of k = 65520
Value of j = 65524

Value of k = 65522

Chapter 5: Functions & Pointers 185

Value ofi =3
Value ofi =3
Value ofi =3
Value of i =3

Figure 5.3 would help you in tracing out how the program prints
the above output.

Remember that when you run this program the addresses that get
printed might turn out to be something different than the ones
shown in the figure. However, with these addresses too the
relationship between i, j and k can be easily established.

i j k
3 65524 65522
65524 65522 65520

Figure 5.3
Observe how the variables j and k have been declared,
int i, %, **k ;

Here, i is an ordinary int, j is a pointer to an int (often called an
integer pointer), whereas k is a pointer to an integer pointer. We
can extend the above program still further by creating a pointer to
a pointer to an integer pointer. In principle, you would agree that
likewise there could exist a pointer to a pointer to a pointer to a
pointer to a pointer. There is no limit on how far can we go on
extending this definition. Possibly, till the point we can
comprehend it. And that point of comprehension is usually a
pointer to a pointer. Beyond this one rarely requires to extend the
definition of a pointer. But just in case...

186 Let Us C

Back to Function Calls

Having had the first tryst with pointers let us now get back to what
we had originally set out to learn—the two types of function
calls—call by value and call by reference. Arguments can
generally be passed to functions in one of the two ways:

(@) sending the values of the arguments
(b) sending the addresses of the arguments

In the first method the ‘value’ of each of the actual arguments in
the calling function is copied into corresponding formal arguments
of the called function. With this method the changes made to the
formal arguments in the called function have no effect on the
values of actual arguments in the calling function. The following
program illustrates the ‘Call by Value’.

main()
{

int a=10,b=20;

swapv (a, b);

printf ("\na =%d b =%d",a,b);
}
swapv (int x, int y)
t

Int t;

t=x;

X=Y;

y=t,

printf ("\nx =%d y = %d", X,y) ;
}

The output of the above program would be:

Chapter 5: Functions & Pointers 187

x=20y=10
a=10b=20

Note that values of a and b remain unchanged even after
exchanging the values of x and y.

In the second method (call by reference) the addresses of actual
arguments in the calling function are copied into formal arguments
of the called function. This means that using these addresses we
would have an access to the actual arguments and hence we would
be able to manipulate them. The following program illustrates this
fact.

main()

{
int a=10,b=20;

swapr (&a, &b) ;
printf ("\na =%d b =%d",a,b);

}
swapr(int *x, int *y)
L
Int t;
t="x;
*X = *y ,
-ky = t 1
}

The output of the above program would be:
a=20b=10

Note that this program manages to exchange the values of a and b
using their addresses stored in x and y.

188 Let Us C

Usually in C programming we make a call by value. This means
that in general you cannot alter the actual arguments. But if
desired, it can always be achieved through a call by reference.

Using a call by reference intelligently we can make a function
return more than one value at a time, which is not possible
ordinarily. This is shown in the program given below.

main()
L
int radius ;
float area, perimeter ;

printf ("\nEnter radius of a circle ") ;
scanf ("%d", &radius) ;
areaperi (radius, &area, &perimeter) ;

printf ("Area = %f", area) ;
printf ("\nPerimeter = %f", perimeter) ;

}
areaperi (int r, float *a, float *p)
{
*a=314*r*r;
*=2*314*%r;
}

And here is the output...

Enter radius of a circle 5
Area = 78.500000
Perimeter = 31.400000

Here, we are making a mixed call, in the sense, we are passing the
value of radius but, addresses of area and perimeter. And since
we are passing the addresses, any change that we make in values
stored at addresses contained in the variables a and p, would make

Chapter 5: Functions & Pointers 189

the change effective in main(). That is why when the control
returns from the function areaperi() we are able to output the
values of area and perimeter.

Thus, we have been able to indirectly return two values from a
called function, and hence, have overcome the limitation of the
return statement, which can return only one value from a function
at a time.

Conclusions

From the programs that we discussed here we can draw the
following conclusions:

(@) If we want that the value of an actual argument should not get
changed in the function being called, pass the actual argument
by value.

(b) If we want that the value of an actual argument should get
changed in the function being called, pass the actual argument
by reference.

(c) If a function is to be made to return more than one value at a
time then return these values indirectly by using a call by
reference.

Recursion

In C, it is possible for the functions to call themselves. A function
is called ‘recursive’ if a statement within the body of a function
calls the same function. Sometimes called ‘circular definition’,
recursion is thus the process of defining something in terms of
itself.

Let us now see a simple example of recursion. Suppose we want to
calculate the factorial value of an integer. As we know, the

190 Let Us C

factorial of a number is the product of all the integers between 1
and that number. For example, 4 factorial is4 * 3* 2 * 1. This can
also be expressed as 4! = 4 * 3! where *!” stands for factorial. Thus
factorial of a number can be expressed in the form of itself. Hence
this can be programmed using recursion. However, before we try
to write a recursive function for calculating factorial let us take a
look at the non-recursive function for calculating the factorial
value of an integer.

main()

{

int a, fact;

printf ("\nEnter any number ") ;
scanf ("%d", &a) ;

fact = factorial (a) ;
printf ("Factorial value = %d", fact) ;

}
factorial (int x)
{
int f=1,i;
for (i=x;i>=1;i-)
f=f*i;
return (f);
}

And here is the output...

Enter any number 3
Factorial value = 6

Chapter 5: Functions & Pointers 191

Work through the above program carefully, till you understand the
logic of the program properly. Recursive factorial function can be
understood only if you are thorough with the above logic.

Following is the recursive version of the function to calculate the
factorial value.

main()

{

int a, fact;

printf ("\nEnter any number ") ;
scanf ("%d", &a) ;

fact=rec(a);
printf ("Factorial value = %d", fact) ;

}
rec (int x)
{
int f;
if(x==1)
return (1) ;
else
f=x*rec(x-1);
return (f);
}

And here is the output for four runs of the program

Enter any number 1
Factorial value = 1
Enter any number 2
Factorial value = 2
Enter any number 3

192 Let Us C

Factorial value = 6
Enter any number 5
Factorial value = 120

Let us understand this recursive factorial function thoroughly. In
the first run when the number entered through scanf() is 1, let us
see what action does rec() take. The value of a (i.e. 1) is copied
into x. Since x turns out to be 1 the condition if (x == 1) is
satisfied and hence 1 (which indeed is the value of 1 factorial) is
returned through the return statement.

When the number entered through scanf() is 2, the (x == 1) test
fails, so we reach the statement,

f=x*rec(x-1);

And here is where we meet recursion. How do we handle the
expression X * rec (X - 1)? We multiply x by rec (x-1). Since
the current value of x is 2, it is same as saying that we must
calculate the value (2 * rec (1)). We know that the value returned
by rec (1) is 1, so the expression reduces to (2 * 1), or simply 2.
Thus the statement,

x*rec(x-1);

evaluates to 2, which is stored in the variable f, and is returned to
main(), where it is duly printed as

Factorial value = 2

Now perhaps you can see what would happen if the value of a is 3,
4,5 and so on.

In case the value of a is 5, main() would call rec() with 5 as its
actual argument, and rec() will send back the computed value. But
before sending the computed value, rec() calls rec() and waits for
a value to be returned. It is possible for the rec() that has just been

Chapter 5: Functions & Pointers 193

called to call yet another rec(), the argument x being decreased in
value by 1 for each of these recursive calls. We speak of this series
of calls to rec() as being different invocations of rec(). These
successive invocations of the same function are possible because
the C compiler keeps track of which invocation calls which. These
recursive invocations end finally when the last invocation gets an
argument value of 1, which the preceding invocation of rec() now
uses to calculate its own f value and so on up the ladder. So we
might say what happens is,

rec (5) returns (5 times rec (4),
which returns (4 times rec (3),
which returns (3 times rec (2),
which returns (2 times rec (1),
whichreturns (1)))))

Foxed? Well, that is recursion for you in its simplest garbs. | hope
you agree that it’s difficult to visualize how the control flows from
one function call to another. Possibly Figure 5.4 would make
things a bit clearer.

Assume that the number entered through scanf() is 3. Using
Figure 5.4 let’s visualize what exactly happens when the recursive
function rec() gets called. Go through the figure carefully. The
first time when rec() is called from main(), x collects 3. From
here, since x is not equal to 1, the if block is skipped and rec() is
called again with the argument (x — 1), i.e. 2. This is a recursive
call. Since x is still not equal to 1, rec() is called yet another time,
with argument (2 - 1). This time as x is 1, control goes back to
previous rec() with the value 1, and f is evaluated as 2.

Similarly, each rec() evaluates its f from the returned value, and
finally 6 is returned to main(). The sequence would be grasped
better by following the arrows shown in Figure 5.4. Let it be clear
that while executing the program there do not exist so many copies
of the function rec(). These have been shown in the figure just to

194 Let Us C

help you keep track of how the control flows during successive
recursive calls.

from main() .
rec (intx) rec (intx) rec (intx)
{ { {
intf; intf; intf;
if (x==1) if (x==1) if (x==1)
return (1) ; return (1) ; —return (1) ;
else else else
f=x*rec(x-1); f=x*rec(x-1); f=x*rec(x-1);
return () ; return (f); T return () ;
} _‘ } | }
tomain() <
Figure 5.4

Recursion may seem strange and complicated at first glance, but it
is often the most direct way to code an algorithm, and once you are
familiar with recursion, the clearest way of doing so.

Recursion and Stack

There are different ways in which data can be organized. For
example, if you are to store five numbers then we can store them
in five different variables, an array, a linked list, a binary tree, etc.
All these different ways of organizing the data are known as data
structures. The compiler uses one such data structure called stack
for implementing normal as well as recursive function calls.

Chapter 5: Functions & Pointers 195

A stack is a Last In First Out (LIFO) data structure. This means
that the last item to get stored on the stack (often called Push
operation) is the first one to get out of it (often called as Pop
operation). You can compare this to the stack of plates in a
cafeteria—the last plate that goes on the stack is the first one to get
out of it. Now let us see how the stack works in case of the
following program.

main()

{
inta=5b=2,c;
c=add(ab);
printf ("sum = %d", ¢) ;

}

add (inti, intj)

{
int sum ;
sum=i+j;
return sum ;

}

In this program before transferring the execution control to the
function fun() the values of parameters a and b are pushed onto
the stack. Following this the address of the statement printf() is
pushed on the stack and the control is transferred to fun(). It is
necessary to push this address on the stack. In fun() the values of
a and b that were pushed on the stack are referred as i and j. In
fun() the local variable sum gets pushed on the stack. When
value of sum is returned sum is popped up from the stack. Next
the address of the statement where the control should be returned
is popped up from the stack. Using this address the control returns
to the printf() statement in main(). Before execution of printf()
begins the two integers that were earlier pushed on the stack are
now popped off.

How the values are being pushed and popped even though we
didn’t write any code to do so? Simple—the compiler on

196 Let Us C

encountering the function call would generate code to push
parameters and the address. Similarly, it would generate code to
clear the stack when the control returns back from fun(). Figure
5.5 shows the contents of the stack at different stages of execution.

Address of ——
printf()
Copy of a 5 Copy of a 5
Copy of b 2 Copy of b 2
Empty stack When call to Before transfering
fun() is met control to fun()
sum 7
Address XXXX XXXX
i 5 5
] 2 2
After control While returning ~ On returning control
reaches fun() control from fun() from fun()
Figure 5.5

Note that in this program popping of sum and address is done by
fun(), whereas popping of the two integers is done by main().
When it is done this way it is known as ‘CDecl Calling
Convention’. There are other calling conventions as well where
instead of main(), fun() itself clears the two integers. The calling
convention also decides whether the parameters being passed to
the function are pushed on the stack in left-to-right or right-to-left
order. The standard calling convention always uses the right-to-left

Chapter 5: Functions & Pointers 197

order. Thus during the call to fun() firstly value of b is pushed to
the stack, followed by the value of a.

The recursive calls are no different. Whenever we make a
recursive call the parameters and the return address gets pushed on
the stack. The stack gets unwound when the control returns from
the called function. Thus during every recursive function call we
are working with a fresh set of parameters.

Also, note that while writing recursive functions you must have an
if statement somewhere in the recursive function to force the
function to return without recursive call being executed. If you
don’t do this and you call the function, you will fall in an
indefinite loop, and the stack will keep on getting filled with
parameters and the return address each time there is a call. Soon
the stack would become full and you would get a run-time error
indicating that the stack has become full. This is a very common
error while writing recursive functions. My advice is to use
printf() statement liberally during the development of recursive
function, so that you can watch what is going on and can abort
execution if you see that you have made a mistake.

Adding Functions to the Library

Most of the times we either use the functions present in the
standard library or we define our own functions and use them. Can
we not add our functions to the standard library? And would it
make any sense in doing so? We can add user-defined functions to
the library. It makes sense in doing so as the functions that are to
be added to the library are first compiled and then added. When we
use these functions (by calling them) we save on their compilation
time as they are available in the library in the compiled form.

Let us now see how to add user-defined functions to the library.
Different compilers provide different utilities to add/delete/modify
functions in the standard library. For example, Turbo C/C++

198 Let Us C

compilers provide a utility called ‘tlib.exe’ (Turbo Librarian). Let
us use this utility to add a function factorial() to the library.

Given below are the steps to do so:

(@)

(b)

(©)

(d)

(e)

Write the function definition of factorial() in some file, say
“fact.c’.

int factorial (int num)

{
int i,f=1;
for(i=1;i<=num;i++)
f=f*i;
return (f);
}
Compile the “fact.c’ file using Alt F9. A new file called

“fact.obj’ would get created containing the compiled code in
machine language.

Add the function to the library by issuing the command

C:\>tlib math.lib + c:\fact.obj

Here, ‘math.lib’ is a library filename, + is a switch, which
means we want to add new function to library and “c:\fact.obj’
is the path of the “.obj’ file.

Declare the prototype of the factorial() function in the header
file, say “fact.h’. This file should be included while calling the
function.

To use the function present inside the library, create a
program as shown below:

#include "c:\\fact.h"
main()

Chapter 5: Functions & Pointers 199

{
intf:
f = factorial (5);
printf ("%d", f) ;
}

(f) Compile and execute the program using Ctrl F9.

If we wish we can delete the existing functions present in the
library using the minus (-) switch.

Instead of modifying the existing libraries we can create our own
library. Let’s see how to do this. Let us assume that we wish to
create a library containing the functions factorial(), prime() and
fibonacci(). As their names suggest, factorial() calculates and
returns the factorial value of the integer passed to it, prime()
reports whether the number passed to it is a prime number or not
and fibonacci() prints the first n terms of the Fibonacci series,
where n is the number passed to it. Here are the steps that need to
be carried out to create this library. Note that these steps are
specific to Turbo C/C++ compiler and would vary for other
compilers.

(@) Define the functions factorial(), prime() and fibonacci() in
a file, say ‘myfuncs.c’. Do not define main() in this file.

(b) Create a file ‘myfuncs.h’ and declare the prototypes of
factorial(), prime() and fibonacci() in it as shown below:

int factorial (int) ;
int prime (int) ;
void fibonacci (int) ;

(c) From the Options menu select the menu-item ‘Application’.
From the dialog that pops us select the option ‘Library’.
Select OK.

200 Let Us C

(d)

Compile the program using Alt F9. This would create the
library file called ‘myfuncs.lib’.

That’s it. The library now stands created. Now we have to use the
functions defined in this library. Here is how it can be done.

(a)

(b)

(©)

(d)

Create a file, say ‘sample.c’ and type the following code in it.

#include "myfuncs.h"
main()
{
int f, result ;
f = factorial (5) ;
result = prime (13);
fibonacci (6) ;
printf ("\n%d %d", f, result) ;
}

Note that the file ‘myfuncs.h’ should be in the same directory
as the file *sample.c’. If not, then while including ‘myfuncs.h’
mention the appropriate path.

Go to the “Project’ menu and select ‘Open Project...” option.
On doing so a dialog would pop up. Give the name of the
project, say ‘sample.prj’ and select OK.

From the ‘Project’ menu select ‘Add Item’. On doing so a file
dialog would appear. Select the file ‘sample.c’ and then select
‘Add’. Also add the file ‘myfuncs.lib’ in the same manner.
Finally select ‘Done’.

Compile and execute the project using Ctrl F9.

Chapter 5: Functions & Pointers 201

Summary

(@) To avoid repetition of code and bulky programs functionally
related statements are isolated into a function.

(b) Function declaration specifies what is the return type of the
function and the types of parameters it accepts.

(c) Function definition defines the body of the function.

(d) Variables declared in a function are not available to other
functions in a program. So, there won’t be any clash even if
we give same name to the variables declared in different
functions.

(e) Pointers are variables which hold addresses of other variables.

(F) A function can be called either by value or by reference.

(@)
(h)
(i)

Pointers can be used to make a function return more than one
value simultaneously.

Recursion is difficult to understand, but in some cases offer a
better solution than loops.

Adding too many functions and calling them frequently may
slow down the program execution.

Exercise

Simple functions, Passing values between functions

[A] What would be the output of the following programs:

(@)

main()

printf ("\nOnly stupids use C?") ;
display() ;

}

display()

{
printf ("\nFools too use C!") ;
main() ;

}

202

Let UsC

(b)

main()

printf ("\nC to it that C survives") ;
main() ;

}

main()
{
int i=45,c¢;
c=check (i);
printf ("\n%d", ¢) ;
}
check (int ch)
{
if (ch>=45)
return (100) ;
else
return (10*10) ;
}

main()

{ . .
int i=45,c;
¢ = multiply (i*1000);
printf ("\n%d", ¢) ;

check (int ch)
{
if (ch >=40000)
return (¢ch/10);
else
return (10) ;
}

Point out the errors, if any, in the following programs:

main()

{

Chapter 5: Functions & Pointers 203

inti=3,j=4,kI;
k = addmult (i,]) ;
[=addmult (i,]);
printf ("\n%d %d", k, 1) ;
}
addmult (int ii, int jj)
{
int kk, Il ;
Kk =ii +jj ;
F=ii*jj;
return (kk, Il');
}

(b) main()
{
int a;
a =message() ;
}

message()

printf ("\nViruses are writtenin C") ;
return ;

}

() main()
{
float a=15.5;
char ch="C";
printit (a, ch) ;
}
printit (&, ch)
{
printf ("\n%f %c", a, ch) ;
}

(d) main()
{

message() ;

204 Let Us C

message() ;

}

message() ;

printf ("\nPraise worthy and C worthy are synonyms") ;

}

() main()

{

let_us_c()

{
printf ("\nC is a Cimple minded language !") ;
printf ("\nOthers are of course no match ") ;

}
}

(H main()
{

}

void message()

message(message ()) :

printf ("\nPraise worthy and C worthy are synonyms") ;

}

[C] Answer the following:

(@) Isthis a correctly written function:

sqr(a);
int a;

{
}

(b) State whether the following statements are True or False:

retun (a*a);

Chapter 5: Functions & Pointers 205

[O]
(a)

(b)

1. The variables commonly used in C functions are available
to all the functions in a program.

2. To return the control back to the calling function we must
use the keyword return.

3. The same variable names can be used in different
functions without any conflict.

4. Every called function must contain a return statement.
5. A function may contain more than one return statements.

6. Each return statement in a function may return a different
value.

7. A function can still be useful even if you don’t pass any
arguments to it and the function doesn’t return any value
back.

8. Same names can be used for different functions without
any conflict.

9. A function may be called more than once from any other
function.

10. It is necessary for a function to return some value.
Answer the following:

Write a function to calculate the factorial value of any integer
entered through the keyboard.

Write a function power (a, b), to calculate the value of a
raised to b.

206 Let Us C

(c) Write a general-purpose function to convert any given year
into its roman equivalent. The following table shows the
roman equivalents of decimal numbers:

Decimal Roman Decimal Roman
i 100
Y, 500 d
10 X 1000 m
50 |
Example:

Roman equivalent of 1988 is mdcccclxxxviii
Roman equivalent of 1525 is mdxxv

(d) Any year is entered through the keyboard. Write a function to
determine whether the year is a leap year or not.

(e) A positive integer is entered through the keyboard. Write a
function to obtain the prime factors of this number.

For example, prime factors of 24 are 2, 2, 2 and 3, whereas
prime factors of 35 are 5 and 7.

Function Prototypes, Call by Value/Reference, Pointers

[E] What would be the output of the following programs:

(@ main()
{
float area;
int radius=1;
area = circle (radius) ;
printf ("\n%f", area) ;
}

circle (int r)

Chapter 5: Functions & Pointers 207

[F]
(a)

(b)

(©)

[C]

{

float a;
a=314*r*r;
return(a);

}

main()
{
void slogan() ;
int c=5;
c =slogan();
printf ("\n%d", ¢) ;
}

void slogan()

{
printf ("\nOnly He men use C!") ;

}

Answer the following:

Write a function which receives a float and an int from
main(), finds the product of these two and returns the product
which is printed through main().

Write a function that receives 5 integers and returns the sum,
average and standard deviation of these numbers. Call this
function from main() and print the results in main().

Write a function that receives marks received by a student in 3
subjects and returns the average and percentage of these
marks. Call this function from main() and print the results in
main().

What would be the output of the following programs:
main()

{
int i=5j=2;

208

LetUsC

junk (i,]);

printf ("\n%d %d", i, j) ;
}
junk (int i, int)

(b) main()

inti=5,j=2;

junk (&, &) ;

printf ("\n%d %d", i,) ;
}
junk (int *i, int *j)
{

*i = *i * *i ,

*j - *j * *j ,

}

(c) main()

{
inti=4,j=2;
junk (&, j);
printf ("\n%d %d", i,]) ;

}

junk (int *i, int)

Lo
*I = *I * *i ,
ISR

}

(d) main()
{
float a=13.5;
float *b, *c ;
b =&a; /*suppose address of a is 1006 */

Chapter 5: Functions & Pointers 209

c=b;

printf ("\n%u %u %u", &a, b, ¢) ;

printf ("\n%f %f %f %f %f", a, *(&a), *&a, *b, *c) ;
}

[H] Point out the errors, if any, in the following programs:

(@ main()

{
int i=135a=135k;
k=pass (i,a);
printf ("\n%d", k) ;

}

pass (int j,int b)

int ¢;

{
c=j+b;
return (c);

}

(b) main()

{
int p=23,f=24;
jiaayjo (&p, &f) ;
printf ("\n%d %d", p,) ;

}

jiaayjo (int g, int g)

{
q=q+q;
g=9+g;

}

() main()
{
int k=35, z;
z=check (k) ;
printf ("\n%d", z) ;
}

210 Let Us C

check (m)
-
int m;
if (m>40)
return (1) ;
else
return (0) ;
}

(d) main()
{
int i=35,%*2;
z =function (&) ;
printf ("\n%d", z) ;

}
function (int *m)
{
return(m+2);
}
[T What would be the output of the following programs:
(@ main()
{
inti=0;
i++
if(i<=5)
{
printf ("\nC adds wings to your thoughts") ;
exit() ;
main() ;
}
}
(b) main()
{
staticint i=0;

i+

Chapter 5: Functions & Pointers 211

[J]
(@)

(b)

(©)

(d)

(€)

()

if (i<=5)

printf ("\n%d", i) ;
main() ;

}

else

exit() ;
}

Attempt the following:

A 5-digit positive integer is entered through the keyboard,
write a function to calculate sum of digits of the 5-digit
number:

(1) W.ithout using recursion
(2) Using recursion

A positive integer is entered through the keyboard, write a
program to obtain the prime factors of the number. Modify the
function suitably to obtain the prime factors recursively.

Write a recursive function to obtain the first 25 numbers of a
Fibonacci sequence. In a Fibonacci sequence the sum of two
successive terms gives the third term. Following are the first
few terms of the Fibonacci sequence:

11235813 21 34 55 89..

A positive integer is entered through the keyboard, write a
function to find the binary equivalent of this number using
recursion.

Write a recursive function to obtain the running sum of first
25 natural numbers.

Write a C function to evaluate the series

sin(x) = x—(x3/3D) + (x> /5D = (x" /7" +---

212 Let Us C

(@)

(h)

(i)

@)

(k)

to five significant digits.

Given three variables x, y, z write a function to circularly shift
their values to right. In other words if x =5,y =8, z = 10 after
circular shifty =5, z = 8, x =10 after circular shifty =5,z =8
and x = 10. Call the function with variables a, b, ¢ to
circularly shift values.

Write a function to find the binary equivalent of a given
decimal integer and display it.

If the lengths of the sides of a triangle are denoted by a, b,
and c, then area of triangle is given by

area = /S(S —a)(S —b)(S —c)

where,S=(a+b+c)/2

Write a function to compute the distance between two points
and use it to develop another function that will compute the
area of the triangle whose vertices are A(x1, y1), B(x2, y2),
and C(x3, y3). Use these functions to develop a function
which returns a value 1 if the point (X, y) lines inside the
triangle ABC, otherwise a value 0.

Write a function to compute the greatest common divisor
given by Euclid’s algorithm, exemplified for J = 1980, K =
1617 as follows:

—_1* -
1980/ 1617 = 1 1980 —1* 1617 = 363

1617/363 =4 1617 -4 * 363 = 165
363/165=2 363 -2*165=33
5/33=5 165-5*33=0

Thus, the greatest common divisor is 33.

O Data Types
Revisited

Integers, long and short

Integers, signed and unsigned

Chars, signed and unsigned

Floats and Doubles

A Few More Issues...

Storage Classes in C
Automatic Storage Class
Register Storage Class
Static Storage Class
External Storage Class
Which to Use When

Summary

Exercise

213

214 Let Us C

three varieties—char, int, and float. It may seem odd to

many, how C programmers manage with such a tiny set of
data types. Fact is, the C programmers aren’t really deprived. They
can derive many data types from these three types. In fact, the
number of data types that can be derived in C, is in principle,
unlimited. A C programmer can always invent whatever data type
he needs.

Q s seen in the first chapter the primary data types could be of

Not only this, the primary data types themselves could be of
several types. For example, a char could be an unsigned char or a
signed char. Or an int could be a short int or a long int.
Sufficiently confusing? Well, let us take a closer look at these
variations of primary data types in this chapter.

To fully define a variable one needs to mention not only its type
but also its storage class. In this chapter we would be exploring the
different storage classes and their relevance in C programming.

Integers, long and short

We had seen earlier that the range of an Integer constant depends
upon the compiler. For a 16-bit compiler like Turbo C or Turbo
C++ the range is —32768 to 32767. For a 32-bit compiler the range
would be —2147483648 to +2147483647. Here a 16-bit compiler
means that when it compiles a C program it generates machine
language code that is targeted towards working on a 16-bit
microprocessor like Intel 8086/8088. As against this, a 32-bit
compiler like VC++ generates machine language code that is
targeted towards a 32-bit microprocessor like Intel Pentium. Note
that this does not mean that a program compiled using Turbo C
would not work on 32-bit processor. It would run successfully but
at that time the 32-bit processor would work as if it were a 16-bit
processor. This happens because a 32-bit processor provides
support for programs compiled using 16-bit compilers. If this
backward compatibility support is not provided the 16-bit program

Chapter 6: Data Types Revisited 215

would not run on it. This is precisely what happens on the new
Intel Itanium processors, which have withdrawn support for 16-bit
code.

Remember that out of the two/four bytes used to store an integer,
the highest bit (16"/32" bit) is used to store the sign of the integer.
This bit is 1 if the number is negative, and 0 if the number is
positive.

C offers a variation of the integer data type that provides what are
called short and long integer values. The intention of providing
these variations is to provide integers with different ranges
wherever possible. Though not a rule, short and long integers
would usually occupy two and four bytes respectively. Each
compiler can decide appropriate sizes depending on the operating
system and hardware for which it is being written, subject to the
following rules:

(@) shorts are at least 2 bytes big
(b) longs are at least 4 bytes big

(c) shorts are never bigger than ints
(d) ints are never bigger than longs

Figure 6.1 shows the sizes of different integers based upon the OS
used.

Compiler short | int | long

16-bit (Turbo C/C++)
32-bit (Visual C++) 2 4 |4

Figure 6.1

long variables which hold long integers are declared using the
keyword long, as in,

216 Let Us C

longint i;
long int abc ;

long integers cause the program to run a bit slower, but the range
of values that we can use is expanded tremendously. The value of
a long integer typically can vary from -2147483648 to
+2147483647. More than this you should not need unless you are
taking a world census.

If there are such things as longs, symmetry requires shorts as
well—integers that need less space in memory and thus help speed
up program execution. short integer variables are declared as,

shortint j;
shortint height ;

C allows the abbreviation of short int to short and of long int to
long. So the declarations made above can be written as,

long i;

long abc;
short |;
short height ;

Naturally, most C programmers prefer this short-cut.

Sometimes we come across situations where the constant is small
enough to be an int, but still we want to give it as much storage as
a long. In such cases we add the suffix ‘L’ or ‘I’ at the end of the
number, as in 23L.

Integers, signed and unsigned

Sometimes, we know in advance that the value stored in a given
integer variable will always be positive—when it is being used to

Chapter 6: Data Types Revisited 217

only count things, for example. In such a case we can declare the
variable to be unsigned, as in,

unsigned int num_students ;

With such a declaration, the range of permissible integer values
(for a 16-bit OS) will shift from the range -32768 to +32767 to the
range O to 65535. Thus, declaring an integer as unsigned almost
doubles the size of the largest possible value that it can otherwise
take. This so happens because on declaring the integer as
unsigned, the left-most bit is now free and is not used to store the
sign of the number. Note that an unsigned integer still occupies
two bytes. This is how an unsigned integer can be declared:

unsigned int i;
unsignedi;

Like an unsigned int, there also exists a short unsigned int and a
long unsigned int. By default a short int is a signed short int and
a long int is a signed long int.

Chars, signed and unsigned

Parallel to signed and unsigned ints (either short or long),
similarly there also exist signed and unsigned chars, both
occupying one byte each, but having different ranges. To begin
with it might appear strange as to how a char can have a sign.
Consider the statement

charch="A";
Here what gets stored in ch is the binary equivalent of the ASCII

value of “‘A’ (i.e. binary of 65). And if 65’s binary can be stored,
then -54’s binary can also be stored (in a signed char).

218 Let Us C

A signed char is same as an ordinary char and has a range from
-128 to +127; whereas, an unsigned char has a range from 0 to
255. Let us now see a program that illustrates this range:

main()

char ch=291;

printf ("\n%d %c", ch, ch) ;
}

What output do you expect from this program? Possibly, 291 and
the character corresponding to it. Well, not really. Surprised? The
reason is that ch has been defined as a char, and a char cannot
take a value bigger than +127. Hence when value of ch exceeds
+127, an appropriate value from the other side of the range is
picked up and stored in ch. This value in our case happens to be
35, hence 35 and its corresponding character #, gets printed out.

Here is another program that would make the concept clearer.

main()

{

char ch;

for (ch=0;ch<=255; ch++)
printf ("\n%d %c", ch, ch);
}

This program should output ASCII values and their corresponding
characters. Well, No! This is an indefinite loop. The reason is that
ch has been defined as a char, and a char cannot take values
bigger than +127. Hence when value of ch is +127 and we perform
ch++ it becomes -128 instead of +128. -128 is less than 255 hence
the condition is still satisfied. Here onwards ch would take values
like -127, -126, -125, -2, -1, 0, +1, +2, ... +127, -128, -127, etc.
Thus the value of ch would keep oscillating between -128 to +127,
thereby ensuring that the loop never gets terminated. How do you

Chapter 6: Data Types Revisited 219

overcome this difficulty? Would declaring ch as an unsigned char
solve the problem? Even this would not serve the purpose since
when ch reaches a value 255, ch++ would try to make it 256
which cannot be stored in an unsigned char. Thus the only
alternative is to declare ch as an int. However, if we are bent upon
writing the program using unsigned char, it can be done as shown
below. The program is definitely less elegant, but workable all the
same.

main()

{

unsigned char ch;

for (ch=0;ch<=254; ch++)
printf ("\n%d %c", ch, ch) ;

printf ("\n%d %c", ch, ch) ;
}

Floats and Doubles

A float occupies four bytes in memory and can range from -3.4e38
to +3.4e38. If this is insufficient then C offers a double data type
that occupies 8 bytes in memory and has a range from -1.7e308 to
+1.7e308. A variable of type double can be declared as,

double a, population ;

If the situation demands usage of real numbers that lie even
beyond the range offered by double data type, then there exists a
long double that can range from -1.7e4932 to +1.7e4932. A long
double occupies 10 bytes in memory.

You would see that most of the times in C programming one is
required to use either chars or ints and cases where floats,
doubles or long doubles would be used are indeed rare.

220 Let Us C

Let us now write a program that puts to use all the data types that
we have learnt in this chapter. Go through the following program
carefully, which shows how to use these different data types. Note
the format specifiers used to input and output these data types.

main()

{
char c;
unsigned char d;
inti;
unsigned int j;
short int k;
unsigned short int |;
longint m;
unsigned long int n;
float X ;
double y;
long double z;

[* char */
scanf ("%c %c", &c, &d) ;
printf ("%c %c", ¢, d);

[*int*/
scanf ("%d %u", &i, &j) ;
printf ("%d %u", i,) ;

[* short int */
scanf ("%d %u", &k, &l) ;
printf ("%d %u", k, 1) ;

*long int */
scanf ("%ld %lu", &m, &n) ;
printf ("%Id %lu", m, n) ;

[* float, double, long double */
scanf ("%f %lIf %Lf", &x, &y, &z);
printf ("%f %If %Lf", X, y,2) ;

Chapter 6: Data Types Revisited

221

}

The essence of all the data types that we have learnt

been captured in Figure 6.2.

so far has

Data Type Range Bytes | Format
signed char -128 to + 127 1 %c
unsigned char 0 to 255 1 %c
short signed int -32768 to +32767 2 %d
short unsigned int | 0 to 65535 2 %u
signed int -32768 to +32767 2 %d
unsigned int 0 to 65535 2 %u
long signed int -2147483648 to +2147483647 4 %Id
long unsigned int | O to 4294967295 4 %lu
float -3.4e38 to +3.4e38 4 %f
double -1.7e308 to +1.7e308 8 %lf
long double -1.7e4932 to +1.7e4932 10 %Lf
Note: The sizes and ranges of int, short and long are compiler
dependent. Sizes in this figure are for 16-bit compiler.

Figure 6.2

A Few More Issues...

Having seen all the variations of the primary types let us take a
look at some more related issues.

(@) We saw earlier that size of an integer is compiler dependent.
This is even true in case of chars and floats. Also, depending
upon the microprocessor for which the compiler targets its
code the accuracy of floating point calculations may change.
For example, the result of 22.0/7.0 would be reported more

222 Let Us C

(b)

(©)

accurately by VC++ compiler as compared to TC/TC++
compilers. This is because TC/TC++ targets its compiled code
to 8088/8086 (16-bit) microprocessors. Since these
microprocessors do not offer floating point support, TC/TC++
performs all float operations using a software piece called
Floating Point Emulator. This emulator has limitations and
hence produces less accurate results. Also, this emulator
becomes part of the EXE file, thereby increasing its size. In
addition to this increased size there is a performance penalty
since this bigger code would take more time to execute.

If you look at ranges of chars and ints there seems to be one
extra number on the negative side. This is because a negative
number is always stored as 2’s compliment of its binary. For
example, let us see how -128 is stored. Firstly, binary of 128
is calculated (10000000), then its 1’s compliment is obtained
(01111111). A 1’s compliment is obtained by changing all Os
to 1s and 1s to Os. Finally, 2’s compliment of this number, i.e.
10000000, gets stored. A 2’s compliment is obtained by
adding 1 to the 1’s compliment. Thus, for -128, 10000000
gets stored. This is an 8-bit number and it can be easily
accommodated in a char. As against this, +128 cannot be
stored in a char because its binary 010000000 (left-most 0 is
for positive sign) is a 9-bit number. However +127 can be
stored as its binary 01111111 turns out to be a 8-bit number.

What happens when we attempt to store +128 in a char? The
first number on the negative side, i.e. -128 gets stored. This is
because from the 9-bit binary of +128, 010000000, only the
right-most 8 bits get stored. But when 10000000 is stored the
left-most bit is 1 and it is treated as a sign bit. Thus the value
of the number becomes -128 since it is indeed the binary
of -128, as can be understood from (b) above. Similarly, you
can verify that an attempt to store +129 in a char results in
storing -127 in it. In general, if we exceed the range from
positive side we end up on the negative side. Vice versa is

Chapter 6: Data Types Revisited 223

also true. If we exceed the range from negative side we end up
on positive side.

Storage Classes in C

We have already said all that needs to be said about constants, but
we are not finished with variables. To fully define a variable one
needs to mention not only its ‘type’ but also its ‘storage class’. In
other words, not only do all variables have a data type, they also
have a ‘storage class’.

We have not mentioned storage classes yet, though we have
written several programs in C. We were able to get away with this
because storage classes have defaults. If we don’t specify the
storage class of a variable in its declaration, the compiler will
assume a storage class depending on the context in which the
variable is used. Thus, variables have certain default storage
classes.

From C compiler’s point of view, a variable name identifies some
physical location within the computer where the string of bits
representing the variable’s value is stored. There are basically two
kinds of locations in a computer where such a value may be kept—
Memory and CPU registers. It is the variable’s storage class that
determines in which of these two locations the value is stored.

Moreover, a variable’s storage class tells us:

(@) Where the variable would be stored.

(b) What will be the initial value of the variable, if initial value is
not specifically assigned.(i.e. the default initial value).

(c) What is the scope of the variable; i.e. in which functions the
value of the variable would be available.

(d) What is the life of the variable; i.e. how long would the
variable exist.

224 Let Us C

There are four storage classes in C:

(a) Automatic storage class
(b) Register storage class
(c) Static storage class

(d) External storage class

Let us examine these storage classes one by one.

Automatic Storage Class

The features of a variable defined to have an automatic storage
class are as under:

Storage — Memory.
Default initial value An unpredictable value, which is often
called a garbage value.

Scope — Local to the block in which the variable
is defined.
Life — Till the control remains within the block

in which the variable is defined.

Following program shows how an automatic storage class variable
is declared, and the fact that if the variable is not initialized it
contains a garbage value.

main()

{

autoint i, j;

printf ("\n%d %d",i,]) ;
}

The output of the above program could be...
1211 221

where, 1211 and 221 are garbage values of i and j. When you run
this program you may get different values, since garbage values

Chapter 6: Data Types Revisited 225

are unpredictable. So always make it a point that you initialize the
automatic variables properly, otherwise you are likely to get
unexpected results. Note that the keyword for this storage class is
auto, and not automatic.

Scope and life of an automatic variable is illustrated in the
following program.

main()
{
autoint i=1;
{
{

{
printf ("\n%d ", i) ;

}
printf ("%d ", i) ;

}
printf ("%d", i) ;
}
}

The output of the above program is:
111

This is because, all printf() statements occur within the outermost
block (a block is all statements enclosed within a pair of braces) in
which i has been defined. It means the scope of i is local to the
block in which it is defined. The moment the control comes out of
the block in which the variable is defined, the variable and its
value is irretrievably lost. To catch my point, go through the
following program.

main()

{

autoint i=1;

{

226 Let Us C

autoint i=2;
{ autoint i=3;
printf ("\n%d ", i) ;
Lrintf("%d i),
} i)rintf("%d", i),

The output of the above program would be:

321

Note that the Compiler treats the three i’s as totally different
variables, since they are defined in different blocks. Once the
control comes out of the innermost block the variable i with value
3 is lost, and hence the i in the second printf() refers to i with
value 2. Similarly, when the control comes out of the next
innermost block, the third printf() refers to the i with value 1.

Understand the concept of life and scope of an automatic storage

class variable thoroughly before proceeding with the next storage
class.

Register Storage Class

The features of a variable defined to be of register storage class
are as under:

Storage - CPU registers.

Default initial value - Garbage value.

Scope - Local to the block in which the variable
is defined.

Life - Till the control remains within the block

in which the variable is defined.

Chapter 6: Data Types Revisited 227

A value stored in a CPU register can always be accessed faster
than the one that is stored in memory. Therefore, if a variable is
used at many places in a program it is better to declare its storage
class as register. A good example of frequently used variables is
loop counters. We can name their storage class as register.

main()

{

registerint i;

for(i=1;i<=10;i++)
printf ("\n%d", i) ;
}

Here, even though we have declared the storage class of i as
register, we cannot say for sure that the value of i would be stored
in a CPU register. Why? Because the number of CPU registers are
limited, and they may be busy doing some other task. What
happens in such an event... the variable works as if its storage class
is auto.

Not every type of variable can be stored in a CPU register.

For example, if the microprocessor has 16-bit registers then they
cannot hold a float value or a double value, which require 4 and 8
bytes respectively. However, if you use the register storage class
for a float or a double variable you won’t get any error messages.
All that would happen is the compiler would treat the variables to
be of auto storage class.

Static Storage Class
The features of a variable defined to have a static storage class are
as under:

Storage — Memory.
Default initial value — Zero.

228 Let Us C

Scope — Local to the block in which the variable
is defined.
Life — Value of the variable persists between

different function calls.

Compare the two programs and their output given in Figure 6.3 to
understand the difference between the automatic and static
storage classes.

main() main()

{ {
increment() ; increment() ;
increment() ; increment() ;
increment() ; increment() ;

} }

increment() increment()

{ {
autointi=1; staticinti=1;
printf ("%d\n", i) ; printf ("%d\n", i) ;
i=i+l; i=i+l;

The output of the above programs would be:

1 1
1 2
1 3

Figure 6.3

The programs above consist of two functions main() and
increment(). The function increment() gets called from main()
thrice. Each time it increments the value of i and prints it. The only
difference in the two programs is that one uses an auto storage
class for variable i, whereas the other uses static storage class.

Chapter 6: Data Types Revisited 229

Like auto variables, static variables are also local to the block in
which they are declared. The difference between them is that static
variables don’t disappear when the function is no longer active.
Their values persist. If the control comes back to the same function
again the static variables have the same values they had last time
around.

In the above example, when variable i is auto, each time
increment() is called it is re-initialized to one. When the function
terminates, i vanishes and its new value of 2 is lost. The result: no
matter how many times we call increment(), i is initialized to 1
every time.

On the other hand, if i is static, it is initialized to 1 only once. It is
never initialized again. During the first call to increment(), i is
incremented to 2. Because i is static, this value persists. The next
time increment() is called, i is not re-initialized to 1; on the
contrary its old value 2 is still available. This current value of i
(i.e. 2) gets printed and then i =i + 1 adds 1 to i to get a value of 3.
When increment() is called the third time, the current value of i
(i.e. 3) gets printed and once again i is incremented. In short, if the
storage class is static then the statement static int i = 1 is executed
only once, irrespective of how many times the same function is
called.

Consider one more program.

main()
L
int *j;
int*fun() ;
j=fun();
printf ("\n%d", ¥) ;
}

int *fun()

{

230 Let Us C

intk=35;
return (&k) ;
}

Here we are returning an address of k from fun(') and collecting it
in j. Thus j becomes pointer to k. Then using this pointer we are
printing the value of k. This correctly prints out 35. Now try
calling any function (even printf()) immediately after the call to
fun(). This time printf() prints a garbage value. Why does this
happen? In the first case, when the control returned from fun()
though k went dead it was still left on the stack. We then accessed
this value using its address that was collected in j. But when we
precede the call to printf() by a call to any other function, the
stack is now changed, hence we get the garbage value. If we want
to get the correct value each time then we must declare k as static.
By doing this when the control returns from fun(), k would not
die.

All this having been said, a word of advice—avoid using static
variables unless you really need them. Because their values are
kept in memory when the variables are not active, which means
they take up space in memory that could otherwise be used by
other variables.

External Storage Class

The features of a variable whose storage class has been defined as
external are as follows:

Storage — Memory.

Default initial value - Zero.

Scope — Global.

Life — As long as the program’s execution

doesn’t come to an end.

Chapter 6: Data Types Revisited 231

External variables differ from those we have already discussed in
that their scope is global, not local. External variables are declared
outside all functions, yet are available to all functions that care to
use them. Here is an example to illustrate this fact.

int i;
main()
{
printf ("\ni = %d", i) ;
increment() ;
increment() ;
decrement() ;
decrement() ;
}
increment()
{
i=i+1;
printf ("\non incrementing i = %d", i) ;
}
decrement()
Lo
i=i-1;
printf ("\non decrementing i = %d", i) ;
}

The output would be:

i=0

on incrementingi=1
on incrementing i = 2
on decrementing i = 1
on decrementingi=0

232 Let Us C

As is obvious from the above output, the value of i is available to
the functions increment() and decrement() since i has been
declared outside all functions.

Look at the following program.

int x=21;
main()
{ |
externint y;
printf ("\n%d %d", X,y) ;
}
inty=231;

Here, x and y both are global variables. Since both of them have
been defined outside all the functions both enjoy external storage
class. Note the difference between the following:

externint y;
inty=31;

Here the first statement is a declaration, whereas the second is the
definition. When we declare a variable no space is reserved for it,
whereas, when we define it space gets reserved for it in memory.
We had to declare y since it is being used in printf() before it’s
definition is encountered. There was no need to declare x since its
definition is done before its usage. Also remember that a variable
can be declared several times but can be defined only once.

Another small issue—what will be the output of the following
program?

int x=10;
main()

{
int x=20;

printf ("\n%d", x) ;

Chapter 6: Data Types Revisited 233

display() ;
}
display()

printf ("\n%d", x) ;
}

Here x is defined at two places, once outside main() and once
inside it. When the control reaches the printf() in main() which x
gets printed? Whenever such a conflict arises, it’s the local
variable that gets preference over the global variable. Hence the
printf() outputs 20. When display() is called and control reaches
the printf() there is no such conflict. Hence this time the value of
the global x, i.e. 10 gets printed.

One last thing—a static variable can also be declared outside all
the functions. For all practical purposes it will be treated as an
extern variable. However, the scope of this variable is limited to
the same file in which it is declared. This means that the variable
would not be available to any function that is defined in a file other
than the file in which the variable is defined.

Which to Use When

Dennis Ritchie has made available to the C programmer a number
of storage classes with varying features, believing that the
programmer is in a best position to decide which one of these
storage classes is to be used when. We can make a few ground
rules for usage of different storage classes in different
programming situations with a view to:

(a) economise the memory space consumed by the variables
(b) improve the speed of execution of the program

The rules are as under:

234 Let Us C

Use static storage class only if you want the value of a
variable to persist between different function calls.

Use register storage class for only those variables that are
being used very often in a program. Reason is, there are very
few CPU registers at our disposal and many of them might be
busy doing something else. Make careful utilization of the
scarce resources. A typical application of register storage class
is loop counters, which get used a number of times in a
program.

Use extern storage class for only those variables that are being
used by almost all the functions in the program. This would
avoid unnecessary passing of these variables as arguments
when making a function call. Declaring all the variables as
extern would amount to a lot of wastage of memory space
because these variables would remain active throughout the
life of the program.

If you don’t have any of the express needs mentioned above,
then use the auto storage class. In fact most of the times we
end up using the auto variables, because often it so happens
that once we have used the variables in a function we don’t
mind loosing them.

Summary

(@)

(b)
(©)

We can use different variations of the primary data types,
namely signed and unsigned char, long and short int, float,
double and long double. There are different format
specifications for all these data types when they are used in
scanf() and printf() functions.

The maximum value a variable can hold depends upon the
number of bytes it occupies in memory.

By default all the variables are signed. We can declare a
variable as unsigned to accommodate greater value without
increasing the bytes occupied.

Chapter 6: Data Types Revisited 235

(d) We can make use of proper storage classes like auto,
register, static and extern to control four properties of the
variable—storage, default initial value, scope and life.

Exercise

[A] What would be the output of the following programs:

(@ main()
—
int i;
for (i=0;i<=50000;i++)
printf ("\n%d", i) ;
}

(b) main()
{
float a=13.5;
double b=135;
printf ("\n%f %lIf*, a, b) ;
}

() inti=0;

main()

{
printf ("\nmain's i = %d", i) ;
i+t
val() ;
printf ("\nmain's i = %d", i) ;
val() ;

val()

{
i=100;
printf ("\nval's i = %d", i) ;
i+t

}

236 Let Us C

(d) main()

{
int x,y,s=2;
s*=3;
y=f(s);
x=g(s);
printf ("\n%d %d %d", s, y, X) ;

}

intt=8;

f(int a)

{
a+t=-9;
t-=4,;
retun (a+t);

(int a)

—_~~ o -

a=1;
t+=a;
retun (a+t);

}

() main()
{
static int count=5;
printf ("\ncount = %d", count--) ;
if (count!=0)
main() ;
}

(H main()
{
int i,j;
for (i=1;i<5;i++)
{
j=g(i);
printf ("\n%d", j) ;
}

Chapter 6: Data Types Revisited

237

—_~ o

}

(int x)

staticint v=1;
int b=3;

VX

return (v+x+b);

(9) float x=45;
main()

{

float v, float f(float);
X*=2.0:

y=f(x);

printf ("\n%f %f", x, y) ;

float f (float a)

{

}

a+=13;
X-=45:
retun (a+x);

(h) main()

{

}

func() ;
func() ;

func()

{

autoint i=0;
registerintj=0;
staticintk=0;

i+ K+

printf ("\n %d % d %d", i, }, k) ;

238 Let Us C

() intx=10;
main()
{
intx=20;
{
intx =30;
printf ("\n%d", x) ;

}
printf ("\n%d", x) ;
}

[B] Point out the errors, if any, in the following programs:

(@ main()
{
long num;
num=2;
printf ("\n%ld", num) ;
}

(b) main()
{
char ch=200;
printf ("\n%d", ch) ;
}

() main()
{
unsigned a=25;
long unsigned b =25l ;
printf ("\n%lu %u", a,b) ;
}

(d) main()

long float a = 25.345e454 ;
unsigned double b=25;
printf ("\n%lf %d", a, b) ;

Chapter 6: Data Types Revisited 239

}

() main()

{

}

float a =25.345:
float *b ;

b=¢&a;
printf ("\n%f %u", a,b) ;

() staticinty;
main()

{

}

staticintz ;
printf ("%d %d", y,z) ;

[C] State whether the following statements are True or False:

(@)

(b)

()

(d)

(€)

(f)

Storage for a register storage class variable is allocated
each time the control reaches the block in which it is
present.

An extern storage class variable is not available to the
functions that precede its definition, unless the variable is
explicitly declared in these functions.

The value of an automatic storage class variable persists
between various function invocations.

If the CPU registers are not available, the register storage
class variables are treated as static storage class variables.

The register storage class variables cannot hold float
values.

If we try to use register storage class for a float variable
the compiler will flash an error message.

240 Let UsC

(9) If the variable x is defined as extern and a variable x is
also defined as a local variable of some function, then the
global variable gets preference over the local variable.

(h) The default value for automatic variable is zero.

(i) The life of static variable is till the control remains within
the block in which it is defined.

(j) If a global variable is to be defined, then the extern
keyword is necessary in its declaration.

(k) The address of register variable is not accessible.

[D] Following program calculates the sum of digits of the number
12345. Go through it and find out why is it necessary to
declare the storage class of the variable sum as static.

main()

-
int a;
a =sumdig (12345) ;
printf ("\n%d", a) ;

sumdig (int num)
{
static int sum ;
int a,b;
a=num% 10 ;
b=(num-a)/10;
sum=sum+a;
if(b!=0)
sumdig (b);
else
return (sum) ;

[The C Preproces-
sor

o Features of C Preprocessor
Macro Expansion
Macros with Arguments
Macros versus Functions
File Inclusion
Conditional Compilation
#if and #elif Directives
Miscellaneous Directives
#undef Directive
#pragma Directive
Summary
Exercise

241

242 Let Us C

he C preprocessor is exactly what its name implies. It is a

program that processes our source program before it is

passed to the compiler. Preprocessor commands (often
known as directives) form what can almost be considered a
language within C language. We can certainly write C programs
without knowing anything about the preprocessor or its facilities.
But preprocessor is such a great convenience that virtually all C
programmers rely on it. This chapter explores the preprocessor
directives and discusses the pros and cons of using them in
programs.

Features of C Preprocessor

There are several steps involved from the stage of writing a C
program to the stage of getting it executed. Figure 7.1 shows these
different steps along with the files created during each stage. You
can observe from the figure that our program passes through
several processors before it is ready to be executed. The input and
output to each of these processors is shown in Figure 7.2.

Note that if the source code is stored in a file PR1.C then the
expanded source code gets stored in a file PR1.l. When this
expanded source code is compiled the object code gets stored in
PR1.0BJ. When this object code is linked with the object code of
library functions the resultant executable code gets stored in
PR1.EXE.

The preprocessor offers several features called preprocessor
directives. Each of these preprocessor directives begin with a #
symbol. The directives can be placed anywhere in a program but
are most often placed at the beginning of a program, before the
first function definition. We would learn the following
preprocessor directives here:

(@) Macro expansion
(b) File inclusion

Chapter 7: The C Preprocessor 243

Hand written program

Text editor

C Source code (PR1.C) I

Preprticessor

Compiler
v

Expanded source code (PR1.1)

Linker
v

Object code (PR1.0BJ)

Executable code (PR1.EXE) I

Figure 7.1
Processor | Input Output
Editor Program typed from C source code containing
keyboard program and preprocessor
commands
Prepro- C source code file Source code file with the
cessor preprocessing commands
properly sorted out
Compiler | Source code file with Relocatable object code
preprocessing commands
sorted out
Linker Relocatable object code | Executable code in
and the standard C machine language
library functions

Figure 7.2

244 Let Us C

(c) Conditional Compilation
(d) Miscellaneous directives

Let us understand these features of preprocessor one by one.

Macro Expansion
Have a look at the following program.

#define UPPER 25
main()
I
inti;
for (i=1;i<=UPPER ;i++)
printf ("\n%d", i) ;
}

In this program instead of writing 25 in the for loop we are writing
it in the form of UPPER, which has already been defined before
main() through the statement,

#define UPPER 25

This statement is called ‘macro definition” or more commonly, just
a ‘macro’. What purpose does it serve? During preprocessing, the
preprocessor replaces every occurrence of UPPER in the program
with 25. Here is another example of macro definition.

#define Pl 3.1415

main()

{
float r=6.25;
float area ;
area=Pl*r*r;:

printf ("\nArea of circle = %f", area) ;

Chapter 7: The C Preprocessor 245

UPPER and PI in the above programs are often called ‘macro
templates’, whereas, 25 and 3.1415 are called their corresponding
‘macro expansions’.

When we compile the program, before the source code passes to
the compiler it is examined by the C preprocessor for any macro
definitions. When it sees the #define directive, it goes through the
entire program in search of the macro templates; wherever it finds
one, it replaces the macro template with the appropriate macro
expansion. Only after this procedure has been completed is the
program handed over to the compiler.

In C programming it is customary to use capital letters for macro
template. This makes it easy for programmers to pick out all the
macro templates when reading through the program.

Note that a macro template and its macro expansion are separated
by blanks or tabs. A space between # and define is optional.
Remember that a macro definition is never to be terminated by a
semicolon.

And now a million dollar question... why use #define in the above
programs? What have we gained by substituting Pl for 3.1415 in
our program? Probably, we have made the program easier to read.
Even though 3.1415 is such a common constant that it is easily
recognizable, there are many instances where a constant doesn’t
reveal its purpose so readily. For example, if the phrase “\x1B[2J”
causes the screen to clear. But which would you find easier to
understand in the middle of your program “\x1B[2J” or
“CLEARSCREEN”? Thus, we would use the macro definition

#define CLEARSCREEN "\x1B[2J"

Then wherever CLEARSCREEN appears in the program it would
automatically be replaced by “\x1B[2J” before compilation begins.

246 Let UsC

There is perhaps a more important reason for using macro
definition than mere readability. Suppose a constant like 3.1415
appears many times in your program. This value may have to be
changed some day to 3.141592. Ordinarily, you would need to go
through the program and manually change each occurrence of the
constant. However, if you have defined Pl in a #define directive,
you only need to make one change, in the #define directive itself:

#define Pl 3.141592

Beyond this the change will be made automatically to all
occurrences of Pl before the beginning of compilation.

In short, it is nice to know that you would be able to change values
of a constant at all the places in the program by just making a
change in the #define directive. This convenience may not matter
for small programs shown above, but with large programs macro
definitions are almost indispensable.

But the same purpose could have been served had we used a
variable pi instead of a macro template PI. A variable could also
have provided a meaningful name for a constant and permitted one
change to effect many occurrences of the constant. It’s true that a
variable can be used in this way. Then, why not use it? For three
reasons it’s a bad idea.

Firstly, it is inefficient, since the compiler can generate faster and
more compact code for constants than it can for variables.
Secondly, using a variable for what is really a constant encourages
sloppy thinking and makes the program more difficult to
understand: if something never changes, it is hard to imagine it as
a variable. And thirdly, there is always a danger that the variable
may inadvertently get altered somewhere in the program. So it’s
no longer a constant that you think it is.

Chapter 7: The C Preprocessor 247

Thus, using #define can produce more efficient and more easily
understandable programs. This directive is used extensively by C
programmers, as you will see in many programs in this book.

Following three examples show places where a #define directive is
popularly used by C programmers.

A #define directive is many a times used to define operators as
shown below.

#define AND &&
#define OR ||
main()

{
int f=1,x=4,y=90;

if ((f<5)AND (x<=200Ry<=45))

printf ("\nYour PC will always work fine...") ;
else

printf ("\nin front of the maintenance man") ;

}

A #define directive could be used even to replace a condition, as
shown below.

#define AND &&
#define ARANGE (a>25AND a<50)
main()

{
int a=30;

if (ARANGE)

printf ("within range") ;
else

printf ("out of range") ;

248 Let UsC

A #define directive could be used to replace even an entire C
statement. This is shown below.

#define FOUND printf ("The Yankee Doodle Virus") ;
main()

{

char signature ;

if (signature =="Y")
FOUND
else
printf ("Safe... as yet!") ;

}

Macros with Arguments

The macros that we have used so far are called simple macros.
Macros can have arguments, just as functions can. Here is an
example that illustrates this fact.

#define AREA(X) (3.14 *x *)

main()

{
float r1=6.25,r2=25, a;
a=AREA(rl);
printf ("\nArea of circle = %f",a) ;
a=AREA(r2);

printf ("\nArea of circle = %f", a) ;

}

Here’s the output of the program...

Area of circle = 122.656250
Area of circle = 19.625000

Chapter 7: The C Preprocessor 249

In this program wherever the preprocessor finds the phrase
AREA(x) it expands it into the statement (3.14 * x * x).
However, that’s not all that it does. The x in the macro template
AREA(X) is an argument that matches the x in the macro
expansion (3.14 * x * x). The statement AREA(rl) in the
program causes the variable rl to be substituted for x. Thus the
statement AREA(rl) is equivalent to:

(3.14*11%11)

After the above source code has passed through the preprocessor,
what the compiler gets to work on will be this:

main()

{
float r1=6.25,12=25,a;

a=314*r1*1;

printf ("Area of circle = %f\n", a) ;
a=314*2*r2;

printf ("Area of circle = %f", a) ;

}

Here is another example of macros with arguments:

#define ISDIGIT(y) (y >= 48 && y <=57)
main()

{

char ch;

printf ("Enter any digit") ;
scanf ("%c", &ch) ;

if (ISDIGIT (ch))

printf ("\nYou entered a digit") ;
else

printf ("\nlllegal input") ;

250 Let Us C

}

Here are some important points to remember while writing macros
with arguments:

(a)

(b)

Be careful not to leave a blank between the macro template
and its argument while defining the macro. For example, there
should be no blank between AREA and (x) in the definition,
#define AREA(X) (3.14 * X * X))

If we were to write AREA (x) instead of AREA(X), the (x)
would become a part of macro expansion, which we certainly
don’t want. What would happen is, the template would be
expanded to

(r1)(3.14*r1*r1)
which won’t run. Not at all what we wanted.

The entire macro expansion should be enclosed within
parentheses. Here is an example of what would happen if we
fail to enclose the macro expansion within parentheses.

#define SQUARE(n) n*n
main()

{

int j;

j=64/SQUARE (4);
printf ("j = %d", }) ;
}

The output of the above program would be:
j=64

whereas, what we expected was j = 4.

Chapter 7: The C Preprocessor 251

(©)

(d)

What went wrong? The macro was expanded into
j=64/4%4:
which yielded 64.

Macros can be split into multiple lines, with a *\’ (back slash)
present at the end of each line. Following program shows how
we can define and use multiple line macros.

#define HLINE for (i=0;i<79;i++)\
printf ("%c", 196) ;

#define VLINE(X, Y) {\
gotoxy (X, Y);\
printf ("%c", 179) ;\
}
main()
‘-
inti,y;
clrser() ;

gotoxy (1,12);
HLINE

for(y=1;y<25;y++)
VLINE (39,y);
}

This program draws a vertical and a horizontal line in the
center of the screen.

If for any reason you are unable to debug a macro then you
should view the expanded code of the program to see how the
macros are getting expanded. If your source code is present in
the file PR1.C then the expanded source code would be stored

252 Let Us C

in PR1.l. You need to generate this file at the command
prompt by saying:

cpp prl.c

Here CPP stands for C PreProcessor. It generates the
expanded source code and stores it in a file called PR1.1. You
can now open this file and see the expanded source code.
Note that the file PR1.I gets generated in C:\TC\BIN
directory. The procedure for generating expanded source code
for compilers other than Turbo C/C++ might be a little
different.

Macros versus Functions

In the above example a macro was used to calculate the area of the
circle. As we know, even a function can be written to calculate the
area of the circle. Though macro calls are ‘like” function calls, they
are not really the same things. Then what is the difference between
the two?

In a macro call the preprocessor replaces the macro template with
its macro expansion, in a stupid, unthinking, literal way. As
against this, in a function call the control is passed to a function
along with certain arguments, some calculations are performed in
the function and a useful value is returned back from the function.

This brings us to a question: when is it best to use macros with
arguments and when is it better to use a function? Usually macros
make the program run faster but increase the program size,
whereas functions make the program smaller and compact.

If we use a macro hundred times in a program, the macro
expansion goes into our source code at hundred different places,
thus increasing the program size. On the other hand, if a function
is used, then even if it is called from hundred different places in

Chapter 7: The C Preprocessor 253

the program, it would take the same amount of space in the
program.

But passing arguments to a function and getting back the returned
value does take time and would therefore slow down the program.
This gets avoided with macros since they have already been
expanded and placed in the source code before compilation.

Moral of the story is—if the macro is simple and sweet like in our
examples, it makes nice shorthand and avoids the overheads
associated with function calls. On the other hand, if we have a
fairly large macro and it is used fairly often, perhaps we ought to
replace it with a function.

File Inclusion

The second preprocessor directive we’ll explore in this chapter is
file inclusion. This directive causes one file to be included in
another. The preprocessor command for file inclusion looks like
this:

#include "filename"

and it simply causes the entire contents of filename to be inserted
into the source code at that point in the program. Of course this
presumes that the file being included is existing. When and why
this feature is used? It can be used in two cases:

(@) If we have a very large program, the code is best divided into
several different files, each containing a set of related
functions. It is a good programming practice to keep different
sections of a large program separate. These files are
#included at the beginning of main program file.

(b) There are some functions and some macro definitions that we
need almost in all programs that we write. These commonly

254 Let Us C

needed functions and macro definitions can be stored in a file,
and that file can be included in every program we write,
which would add all the statements in this file to our program
as if we have typed them in.

It is common for the files that are to be included to have a .h
extension. This extension stands for *header file’, possibly because
it contains statements which when included go to the head of your
program. The prototypes of all the library functions are grouped
into different categories and then stored in different header files.
For example prototypes of all mathematics related functions are
stored in the header file ‘math.h’, prototypes of console
input/output functions are stored in the header file ‘conio.h’, and
SO on.

Actually there exist two ways to write #include statement. These
are:

#include "filename"
#include <filename>

The meaning of each of these forms is given below:

#include "goto.c" This command would look for the file goto.c
in the current directory as well as the
specified list of directories as mentioned in
the include search path that might have been
set up.

#include <goto.c> This command would look for the file goto.c
in the specified list of directories only.

The include search path is nothing but a list of directories that
would be searched for the file being included. Different C
compilers let you set the search path in different manners. If you
are using Turbo C/C++ compiler then the search path can be set up
by selecting ‘Directories’ from the “‘Options” menu. On doing this

Chapter 7: The C Preprocessor 255

a dialog box appears. In this dialog box against ‘Include
Directories’ we can specify the search path. We can also specify
multiple include paths separated by *;” (semicolon) as shown
below:

c:\te\lib ; c:\mylib ; d:\libfiles

The path can contain maximum of 127 characters. Both relative
and absolute paths are valid. For example “.\dir\incfiles’ is a valid
path.

Conditional Compilation

We can, if we want, have the compiler skip over part of a source
code by inserting the preprocessing commands #ifdef and #endif,
which have the general form:

#ifdef macroname
statement 1 ;
statement 2 ;
Statement 3 ;

#endif

If macroname has been #defined, the block of code will be
processed as usual; otherwise not.

Where would #ifdef be useful? When would you like to compile
only a part of your program? In three cases:

(@) To “comment out” obsolete lines of code. It often happens
that a program is changed at the last minute to satisfy a client.
This involves rewriting some part of source code to the
client’s satisfaction and deleting the old code. But veteran
programmers are familiar with the clients who change their
mind and want the old code back again just the way it was.

256 Let Us C

(b)

Now you would definitely not like to retype the deleted code
again.

One solution in such a situation is to put the old code within a
pair of /* */ combination. But we might have already
written a comment in the code that we are about to “comment
out”. This would mean we end up with nested comments.
Obviously, this solution won’t work since we can’t nest
comments in C.

Therefore the solution is to use conditional compilation as
shown below.

main()
{
#ifdef OKAY
statement 1 ;
statement 2 ; /* detects virus */
statement 3 ;
statement 4 ; /* specific to stone virus */
#endif

statement 5 ;
statement 6 ;
statement 7 ;

}

Here, statements 1, 2, 3 and 4 would get compiled only if the
macro OKAY has been defined, and we have purposefully
omitted the definition of the macro OKAY. At a later date, if
we want that these statements should also get compiled all
that we are required to do is to delete the #ifdef and #endif
statements.

A more sophisticated use of #ifdef has to do with making the
programs portable, i.e. to make them work on two totally
different computers. Suppose an organization has two

Chapter 7: The C Preprocessor 257

different types of computers and you are expected to write a
program that works on both the machines. You can do so by
isolating the lines of code that must be different for each
machine by marking them off with #ifdef. For example:

main()
{
#ifdef INTEL
code suitable for a Intel PC
#else
code suitable for a Motorola PC
#endif
code common to both the computers

}

When you compile this program it would compile only the
code suitable for a Intel PC and the common code. This is
because the macro INTEL has not been defined. Note that the
working of #ifdef - #else - #endif is similar to the ordinary if -
else control instruction of C.

If you want to run your program on a Motorola PC, just add a
statement at the top saying,

#define INTEL

Sometimes, instead of #ifdef the #ifndef directive is used.
The #ifndef (which means ‘if not defined’) works exactly
opposite to #ifdef. The above example if written using
#ifndef, would look like this:

main()

#ifndef INTEL

code suitable for a Intel PC
#else

code suitable for a Motorola PC

258 Let Us C

#endif
code common to both the computers

}

(c) Suppose a function myfunc() is defined in a file ‘myfile.h’
which is #included in a file “myfilel.h’. Now in your program
file if you #include both ‘myfile.n” and ‘myfilel.h’ the
compiler flashes an error “Multiple declaration for myfunc’.
This is because the same file ‘myfile.h’ gets included twice.
To avoid this we can write following code in the header file.

* myfile.h */
#ifndef __myfile_h
#define __myfile_h

myfunc()

{

}
#endif

[* some code */

First time the file *myfile.h’ gets included the preprocessor
checks whether a macro called __myfile_h has been defined
or not. If it has not been then it gets defined and the rest of the
code gets included. Next time we attempt to include the same
file, the inclusion is prevented since __ myfile_h already
stands defined. Note that there is nothing special about
__myfile_h. In its place we can use any other macro as well.

#if and #elif Directives

The #if directive can be used to test whether an expression
evaluates to a nonzero value or not. If the result of the expression
is nonzero, then subsequent lines upto a #else, #elif or #endif are
compiled, otherwise they are skipped.

Chapter 7: The C Preprocessor 259

A simple example of #if directive is shown below:

main()
{

#if TEST <=5
statement 1 ;
statement 2 ;
statement 3 ;

#else
statement 4 ;
statement 5 ;
statement 6 ;

#endif

}

If the expression, TEST <=5 evaluates to true then statements 1, 2
and 3 are compiled otherwise statements 4, 5 and 6 are compiled.
In place of the expression TEST <= 5 other expressions like
(LEVEL == HIGH || LEVEL == LOW) or ADAPTER ==
CGA can also be used.

If we so desire we can have nested conditional compilation
directives. An example that uses such directives is shown below.

#if ADAPTER == VGA
code for video graphics array
#else
#if ADAPTER == SVGA
code for super video graphics array
#else
code for extended graphics adapter
#endif
#endif

The above program segment can be made more compact by using
another conditional compilation directive called #elif. The same
program using this directive can be rewritten as shown below.

260 Let Us C

Observe that by using the #elif directives the number of #endifs
used in the program get reduced.

#if ADAPTER == VGA

code for video graphics array
#elif ADAPTER == SVGA

code for super video graphics array
#else

code for extended graphics adapter
#endif

Miscellaneous Directives

There are two more preprocessor directives available, though they
are not very commonly used. They are:

(@) #undef
(b) #pragma

#undef Directive

On some occasions it may be desirable to cause a defined name to
become ‘undefined’. This can be accomplished by means of the
#undef directive. In order to undefine a macro that has been earlier
#defined, the directive,

#undef macro template

can be used. Thus the statement,

#undef PENTIUM

would cause the definition of PENTIUM to be removed from the
system. All subsequent #ifdef PENTIUM statements would
evaluate to false. In practice seldom are you required to undefine a

macro, but for some reason if you are required to, then you know
that there is something to fall back upon.

Chapter 7: The C Preprocessor 261

#pragma Directive

This directive is another special-purpose directive that you can use
to turn on or off certain features. Pragmas vary from one compiler
to another. There are certain pragmas available with Microsoft C
compiler that deal with formatting source listings and placing
comments in the object file generated by the compiler. Turbo
C/C++ compiler has got a pragma that allows you to suppress
warnings generated by the compiler. Some of these pragmas are
discussed below.

(a) #pragma startup and #pragma exit: These directives allow
us to specify functions that are called upon program startup
(before main()) or program exit (just before the program
terminates). Their usage is as follows:

void funl();
void fun2() ;

#pragma startup funl
#pragma exit fun2

main()

{

printf ("\nInside maim") ;

}

void funl()

{
printf ("\ninside fun1") ;

}

void fun2()

{
printf ("\nInside fun2") ;

}

262 Let Us C

(b)

And here is the output of the program.

Inside funl
Inside main
Inside fun2

Note that the functions funl() and fun2() should neither
receive nor return any value. If we want two functions to get
executed at startup then their pragmas should be defined in
the reverse order in which you want to get them called.

#pragma warn: This directive tells the compiler whether or
not we want to suppress a specific warning. Usage of this
pragma is shown below.

#pragma warn —rvl /* return value */
#pragma warn —par /* parameter not used */
#pragma warn —rch /* unreachable code */

int 1()
{

}

void f2 (int x)
{

}

int 3()
{

inta=>5;

printf ("\ninside 2") ;

int Xx=6;
return X ;
X++

}

void main()

Chapter 7: The C Preprocessor 263

{
f1();
f2(7);
f3();

}

If you go through the program you can notice three problems
immediately. These are:

(@) Though promised, f1() doesn’t return a value.

(b) The parameter x that is passed to f2() is not being used
anywhere in f2().

(c) The control can never reach x++ in f3().

If we compile the program we should expect warnings
indicating the above problems. However, this does not happen
since we have suppressed the warnings using the #pragma
directives. If we replace the ‘-’ sign with a ‘+’ then these
warnings would be flashed on compilation. Though it is a bad
practice to suppress warnings, at times it becomes useful to
suppress them. For example, if you have written a huge
program and are trying to compile it, then to begin with you
are more interested in locating the errors, rather than the
warnings. At such times you may suppress the warnings.
Once you have located all errors, then you may turn on the
warnings and sort them out.

Summary

(@) The preprocessor directives enable the programmer to write
programs that are easy to develop, read, modify and transport
to a different computer system.

264

Let UsC

(b) We can make use of various preprocessor directives such as
#define, #include, #ifdef - #else - #endif, #if and #elif in our
program.

(c) The directives like #undef and #pragma are also useful
although they are seldom used.

Exercise

[A] Answer the following:

(@) What is a preprocessor directive

1.
2.
3.
4.

a message from compiler to the programmer

a message from compiler to the linker

a message from programmer to the preprocessor

a message from programmer to the microprocessor

(b) Which of the following are correctly formed #define
statements:
#define INCH PER FEET 12
#define SQR (X) (X*X)
#define SQR(X) X*X
#define SQR(X) (X*X)

(c) State True or False:

1.
2.
3.

A macro must always be written in capital letters.
A macro should always be accomodated in a single line.

After preprocessing when the program is sent for
compilation the macros are removed from the expanded
source code.

Macros with arguments are not allowed.
Nested macros are allowed.

In a macro call the control is passed to the macro.

Chapter 7: The C Preprocessor 265

(d) How many #include directives can be there in a given
program file?

(e) What is the difference between the following two #include
directives:

#include "conio.h"
#include <conio.h>

(F) A header file is:

1. Afile that contains standard library functions

2. A file that contains definitions and macros

3. Afile that contains user - defined functions

4. Afile that is present in current working directory

(9) Which of the following is not a preprocessor directive

1. #if

2. telseif
3. #undef
4. #pragma

(h) All macro substitutions in a program are done

1. Before compilation of the program
2. After compilation

3. During execution

4. None of the above

(i) Ina program the statement:
#include "filename”
is replaced by the contents of the file “filename”

1. Before compilation
2. After Compilation
3. During execution
4. None of the above

266 Let Us C

[B]

What would be the output of the following program:

main()
{
inti=2;
#ifdef DEF
i*=1i;
#else
printf ("\n%d", i) ;
#endif
}

#define PRODUCT(x) (x *x)

main()

{ . . .
inti=3,j;
j=PRODUCT(i+1);
printf ("\n%d", |) ;

}

#define PRODUCT(X) (x * x)
main()
{
inti=3,j,k;
j=PRODUCT(i++);
k =PRODUCT (++i);

printf ("\n%d %d", j, k) ;
}

define SEMI ;
main()
{
intp=3SEMI;
printf ("%d", p) SEMI
}

Chapter 7: The C Preprocessor 267

[C] Attempt the following:

(@) Write down macro definitions for the following:

1. To test whether a character entered is a small case letter or
not.

2. To test whether a character entered is a upper case letter or
not.

3. To test whether a character is an alphabet or not. Make
use of the macros you defined in (1) and (2) above.

4. To obtain the bigger of two numbers.

(b) Write macro definitions with arguments for calculation of
area and perimeter of a triangle, a square and a circle. Store
these macro definitions in a file called “areaperi.h”. Include
this file in your program, and call the macro definitions for
calculating area and perimeter for different squares, triangles
and circles.

(c) Write down macro definitions for the following:

1. To find arithmetic mean of two numbers.

2. To find absolute value of a number.

3. To convert a uppercase alphabet to lowercase.
4. To obtain the bigger of two numbers.

(d) Write macro definitions with arguments for calculation of
Simple Interest and Amount. Store these macro definitions in
a file called “interest.h”. Include this file in your program, and
use the macro definitions for calculating simple interest and
amount.

268 Let Us C

8

Arrays

What are Arrays
A Simple Program Using Array
More on Arrays
Array Initialisation
Bounds Checking
Passing Array Elements to a Function
Pointers and Arrays
Passing an Entire Array to a Function
The Real Thing
Two Dimensional Arrays
Initialising a 2-Dimensional Array
Memory Map of a 2-Dimensional Array
Pointers and 2-Dimensional Arrays
Pointer to an Array
Passing 2-D Array to a Function
Array of Pointers
Three-Dimensional Array
Summary
Exercise

269

270 Let Us C

design a set of similar data types, called array. This chapter

The C language provides a capability that enables the user to
describes how arrays can be created and manipulated in C.

We should note that, in many C books and courses arrays and
pointers are taught separately. | feel it is worthwhile to deal with
these topics together. This is because pointers and arrays are so
closely related that discussing arrays without discussing pointers
would make the discussion incomplete and wanting. In fact all
arrays make use of pointers internally. Hence it is all too relevant
to study them together rather than as isolated topics.

What are Arrays

For understanding the arrays properly, let us consider the
following program:

main()

L
int x;
X=5;
x=10;

printf ("\nx = %d", x) ;
}

No doubt, this program will print the value of x as 10. Why so?
Because when a value 10 is assigned to x, the earlier value of x,
i.e. 5, is lost. Thus, ordinary variables (the ones which we have
used so far) are capable of holding only one value at a time (as in
the above example). However, there are situations in which we
would want to store more than one value at a time in a single
variable.

For example, suppose we wish to arrange the percentage marks
obtained by 100 students in ascending order. In such a case we
have two options to store these marks in memory:

Chapter 8: Arrays 271

(@) Construct 100 variables to store percentage marks obtained by
100 different students, i.e. each variable containing one
student’s marks.

(b) Construct one variable (called array or subscripted variable)
capable of storing or holding all the hundred values.

Obviously, the second alternative is better. A simple reason for
this is, it would be much easier to handle one variable than
handling 100 different variables. Moreover, there are certain logics
that cannot be dealt with, without the use of an array. Now a
formal definition of an array—An array is a collective name given
to a group of ‘similar quantities’. These similar quantities could be
percentage marks of 100 students, or salaries of 300 employees, or
ages of 50 employees. What is important is that the quantities must
be ‘similar’. Each member in the group is referred to by its
position in the group. For example, assume the following group of
numbers, which represent percentage marks obtained by five
students.

per = {48, 88, 34, 23, 96 }

If we want to refer to the second number of the group, the usual
notation used is per,. Similarly, the fourth number of the group is
referred as per,. However, in C, the fourth number is referred as
per[3]. This is because in C the counting of elements begins with 0
and not with 1. Thus, in this example per[3] refers to 23 and
per[4] refers to 96. In general, the notation would be perfJi],
where, i can take a value 0, 1, 2, 3, or 4, depending on the position
of the element being referred. Here per is the subscripted variable
(array), whereas i is its subscript.

Thus, an array is a collection of similar elements. These similar
elements could be all ints, or all floats, or all chars, etc. Usually,
the array of characters is called a “string’, whereas an array of ints
or floats is called simply an array. Remember that all elements of

272 Let Us C

any given array must be of the same type. i.e. we cannot have an
array of 10 numbers, of which 5 are ints and 5 are floats.

A Simple Program Using Array

Let us try to write a program to find average marks obtained by a
class of 30 students in a test.

main()
b
int avg, sum=20;
int i;
int marks[30] ; /*array declaration */

for (i=0;i<=29;i++)

printf ("\nEnter marks ") ;
scanf ("%d", &marks[i]) ; /* store data in array */

}

for (i=0;i<=29;i++)
sum = sum + marks[i] ; /* read data from an array*/

avg =sum/30;
printf ("\nAverage marks = %d", avg) ;

}

There is a lot of new material in this program, so let us take it apart
slowly.

Array Declaration

To begin with, like other variables an array needs to be declared so
that the compiler will know what kind of an array and how large
an array we want. In our program we have done this with the
statement:

Chapter 8: Arrays 273

int marks[30] ;

Here, int specifies the type of the variable, just as it does with
ordinary variables and the word marks specifies the name of the
variable. The [30] however is new. The number 30 tells how many
elements of the type int will be in our array. This number is often
called the ‘dimension’ of the array. The bracket ([]) tells the
compiler that we are dealing with an array.

Accessing Elements of an Array

Once an array is declared, let us see how individual elements in the
array can be referred. This is done with subscript, the number in
the brackets following the array name. This number specifies the
element’s position in the array. All the array elements are
numbered, starting with 0. Thus, marks[2] is not the second
element of the array, but the third. In our program we are using the
variable i as a subscript to refer to various elements of the array.
This variable can take different values and hence can refer to the
different elements in the array in turn. This ability to use variables
as subscripts is what makes arrays so useful.

Entering Data into an Array
Here is the section of code that places data into an array:
for(i=0;i<=29;i++)

printf ("\nEnter marks ") ;
scanf ("%d", &marks|i]) ;

}

The for loop causes the process of asking for and receiving a
student’s marks from the user to be repeated 30 times. The first
time through the loop, i has a value 0, so the scanf() function will
cause the value typed to be stored in the array element marks[0],
the first element of the array. This process will be repeated until i

274 Let Us C

becomes 29. This is last time through the loop, which is a good
thing, because there is no array element like marks[30].

In scanf() function, we have used the “address of” operator (&) on
the element marks][i] of the array, just as we have used it earlier
on other variables (&rate, for example). In so doing, we are
passing the address of this particular array element to the scanf()
function, rather than its value; which is what scanf() requires.

Reading Data from an Array

The balance of the program reads the data back out of the array
and uses it to calculate the average. The for loop is much the same,
but now the body of the loop causes each student’s marks to be
added to a running total stored in a variable called sum. When all
the marks have been added up, the result is divided by 30, the
number of students, to get the average.

for (i=0;i<=29;i++)
sum = sum + marksi] ;

avg=sum/30;
printf ("\nAverage marks = %d", avg) ;

To fix our ideas, let us revise whatever we have learnt about
arrays:

(@ An array is a collection of similar elements.

(b) The first element in the array is numbered 0, so the last
element is 1 less than the size of the array.

(c) Anarray is also known as a subscripted variable.

(d) Before using an array its type and dimension must be
declared.

(e) However big an array its elements are always stored in
contiguous memory locations. This is a very important point
which we would discuss in more detail later on.

Chapter 8: Arrays 275

More on Arrays

Array is a very popular data type with C programmers. This is
because of the convenience with which arrays lend themselves to
programming. The features which make arrays so convenient to
program would be discussed below, along with the possible pitfalls
in using them.

Array Initialisation

So far we have used arrays that did not have any values in them to
begin with. We managed to store values in them during program
execution. Let us now see how to initialize an array while
declaring it. Following are a few examples that demonstrate this.

int num[6]={2,4,12,5,45,5};

int n[]={2,4,12,5,45,5};

float press[]={12.3,34.2-23.4,-11.3};
Note the following points carefully:

(@) Till the array elements are not given any specific values, they
are supposed to contain garbage values.

(b) If the array is initialised where it is declared, mentioning the
dimension of the array is optional as in the 2" example above.

Array Elements in Memory

Consider the following array declaration:

int arr[8] ;

What happens in memory when we make this declaration? 16

bytes get immediately reserved in memory, 2 bytes each for the 8
integers (under Windows/Linux the array would occupy 32 bytes

276 Let Us C

as each integer would occupy 4 bytes). And since the array is not
being initialized, all eight values present in it would be garbage
values. This so happens because the storage class of this array is
assumed to be auto. If the storage class is declared to be static
then all the array elements would have a default initial value as
zero. Whatever be the initial values, all the array elements would
always be present in contiguous memory locations. This
arrangement of array elements in memory is shown in Figure 8.1.

12 34 66 -45 23 346 77 90
65508 65510 65512 65514 65516 65518 65520 65522

Figure 8.1

Bounds Checking

In C there is no check to see if the subscript used for an array
exceeds the size of the array. Data entered with a subscript
exceeding the array size will simply be placed in memory outside
the array; probably on top of other data, or on the program itself.
This will lead to unpredictable results, to say the least, and there
will be no error message to warn you that you are going beyond
the array size. In some cases the computer may just hang. Thus,
the following program may turn out to be suicidal.

main()

{
int num[40], i;

for (i=0;i<=100;i++)
numfi] =i;

Chapter 8: Arrays 277

Thus, to see to it that we do not reach beyond the array size is
entirely the programmer’s botheration and not the compiler’s.

Passing Array Elements to a Function

Array elements can be passed to a function by calling the function
by value, or by reference. In the call by value we pass values of
array elements to the function, whereas in the call by reference we
pass addresses of array elements to the function. These two calls
are illustrated below:

* Demonstration of call by value */
main()
I
int i;
int marks[] ={55, 65, 75, 56, 78, 78,90 } ;

for (i=0;i<=6;i++)
display (marks[i]) ;

}
display (int m)
{
printf ("%d ", m);
}

And here’s the output...
95657556 78 78 90

Here, we are passing an individual array element at a time to the
function display() and getting it printed in the function display().
Note that since at a time only one element is being passed, this
element is collected in an ordinary integer variable m, in the
function display().

And now the call by reference.

278 Let Us C

* Demonstration of call by reference */
main()
S
int i;
int marks[] ={55, 65, 75, 56, 78, 78,90 } ;

for (i=0;i<=6;it+)
disp (&marksli]) ;
}

disp (int *n)

printf ("%d ", *n) ;
}

And here’s the output...
55657556 78 78 90

Here, we are passing addresses of individual array elements to the
function display(). Hence, the variable in which this address is
collected (n) is declared as a pointer variable. And since n contains
the address of array element, to print out the array element we are
using the ‘value at address’ operator (*).

Read the following program carefully. The purpose of the function
disp() is just to display the array elements on the screen. The
program is only partly complete. You are required to write the
function show() on your own. Try your hand at it.

main()
{
int i;
int marks[] ={55, 65, 75, 56, 78, 78,90 } ;

for(i=0;i<=6;i++)
disp (&marksli]) ;

Chapter 8: Arrays 279

}
disp (int *n)
{
show (&n);
}

Pointers and Arrays

To be able to see what pointers have got to do with arrays, let us
first learn some pointer arithmetic. Consider the following

example:

main()

{
int i=3,*;
float j=1.5, *y;
char k='c',*z;

printf ("\nValue of i = %d", i) ;

printf ("\nValue of j = %f",) ;

printf ("\nValue of k = %c", k) ;

X=8&i;

y=4&j;

z=8&Kk;

printf ("\nOriginal address in x = %u", X) ;
printf ("\nOriginal address iny = %u",y) ;
printf ("\nOriginal address in z = %u", z) ;
X++

Y

Z++

printf ("\nNew address in x = %u", X) ;
printf ("\nNew address iny = %u",y);
printf ("\nNew address in z = %u", z) ;

}

Here is the output of the program.

280 Let Us C

Valueofi=3
Value of j = 1.500000
Value of k=¢

Original address in x = 65524
Original address in y = 65520
Original address in z = 65519
New address in x = 65526
New address in y = 65524
New address in z = 65520

Observe the last three lines of the output. 65526 is original value in
x plus 2, 65524 is original value in y plus 4, and 65520 is original
value in z plus 1. This so happens because every time a pointer is
incremented it points to the immediately next location of its type.
That is why, when the integer pointer x is incremented, it points to
an address two locations after the current location, since an int is
always 2 bytes long (under Windows/Linux since int is 4 bytes
long, new value of x would be 65528). Similarly, y points to an
address 4 locations after the current location and z points 1
location after the current location. This is a very important result
and can be effectively used while passing the entire array to a
function.

The way a pointer can be incremented, it can be decremented as
well, to point to earlier locations. Thus, the following operations
can be performed on a pointer:

(@) Addition of a number to a pointer. For example,
int i=4,%,*;
j=&i;
j=i+1;
j=i+9;
k=j+3;

(b) Subtraction of a number from a pointer. For example,

Chapter 8: Arrays 281

int i=4,%,*%;
j=&;
1=1-2;
1=1-5;
k=j-6;

(c) Subtraction of one pointer from another.

One pointer variable can be subtracted from another provided
both variables point to elements of the same array. The
resulting value indicates the number of bytes separating the
corresponding array elements. This is illustrated in the
following program.

main()
{
int arr[] ={ 10, 20, 30, 45, 67,56, 74 };
int *i, % ;
i=&arr[1] ;
j = &arr[5] ;

printf (“%d %d", j-i, % - *i) ;
}

Here i and j have been declared as integer pointers holding
addresses of first and fifth element of the array respectively.

Suppose the array begins at location 65502, then the elements
arr[1] and arr[5] would be present at locations 65504 and
65512 respectively, since each integer in the array occupies
two bytes in memory. The expression j - i would print a value
4 and not 8. This is because j and i are pointing to locations
that are 4 integers apart. What would be the result of the
expression *j - *i? 36, since *j and *i return the values
present at addresses contained in the pointers j and i.

(d) Comparison of two pointer variables

282

Let UsC

Pointer variables can be compared provided both variables
point to objects of the same data type. Such comparisons can
be useful when both pointer variables point to elements of the
same array. The comparison can test for either equality or
inequality. Moreover, a pointer variable can be compared with
zero (usually expressed as NULL). The following program
illustrates how the comparison is carried out.

main()

{

}

int ar]1={10, 20, 36, 72, 45,36 } ;
int ¥, *k;

|
k

if(j==k)
printf ("The two pointers point to the same location") ;
else

printf ("The two pointers do not point to the same location™) ;

garr[4];
(arr+4);

A word of caution! Do not attempt the following operations on
pointers... they would never work out.

(a) Addition of two pointers
(b) Multiplication of a pointer with a constant
(c) Division of a pointer with a constant

Now we will try to correlate the following two facts, which we
have learnt above:

(@) Array elements are always stored in contiguous memory
locations.

(b) A pointer when incremented always points to an immediately
next location of its type.

Chapter 8: Arrays 283

Suppose we have an array num[] = { 24, 34, 12, 44, 56, 17 }. The
following figure shows how this array is located in memory.

24 34 12 44 56 17

65512 65514 65516 65518 65520 65522

Figure 8.2

Here is a program that prints out the memory locations in which
the elements of this array are stored.

main()

{
int num[]={24, 34,12, 44,56, 17};
int i;

for(i=0;i<=5;i+t)

printf ("\nelement no. %d ", i) ;
printf ("address = %u", ¨i]) ;

}

The output of this program would look like this:

element no. 0 address = 65512
element no. 1 address = 65514
element no. 2 address = 65516
element no. 3 address = 65518
element no. 4 address = 65520
element no. 5 address = 65522

Note that the array elements are stored in contiguous memory
locations, each element occupying two bytes, since it is an integer

284 Let Us C

array. When you run this program, you may get different
addresses, but what is certain is that each subsequent address
would be 2 bytes (4 bytes under Windows/Linux) greater than its
immediate predecessor.

Our next two programs show ways in which we can access the
elements of this array.

main()

{
int num[]={24, 34,12, 44,56, 17};
int i;

for (i=0;i<=5;i++)

printf ("\naddress = %u ", &num[i]) ;
printf ("element = %d", num(i]) ;

}

The output of this program would be:

address = 65512 element = 24
address = 65514 element = 34
address = 65516 element = 12
address = 65518 element = 44
address = 65520 element = 56
address = 65522 element = 17

This method of accessing array elements by using subscripted
variables is already known to us. This method has in fact been
given here for easy comparison with the next method, which
accesses the array elements using pointers.

main()

int num[]=1{24, 34, 12, 44,56, 17} ;

Chapter 8: Arrays 285

int i, % ;
j=&numl[0] ; /*assign address of zeroth element */
for (i=0;i<=5;i++)

printf ("\naddress = %u ", j) ;
printf ("element = %d",) ;
j++; [*increment pointer to point to next location */
}
}

The output of this program would be:

address = 65512 element = 24
address = 65514 element = 34
address = 65516 element = 12
address = 65518 element = 44
address = 65520 element = 56
address = 65522 element = 17

In this program, to begin with we have collected the base address
of the array (address of the 0" element) in the variable j using the
statement,

j=&num|0] ; /*assigns address 6551210 | */

When we are inside the loop for the first time, j contains the
address 65512, and the value at this address is 24. These are
printed using the statements,

printf ("\naddress = %u ", j) ;
printf ("element = %d", %j) ;

On incrementing j it points to the next memory location of its type
(that is location no. 65514). But location no. 65514 contains the
second element of the array, therefore when the printf()

286 Let Us C

statements are executed for the second time they print out the
second element of the array and its address (i.e. 34 and 65514)...
and so on till the last element of the array has been printed.

Obviously, a question arises as to which of the above two methods
should be used when? Accessing array elements by pointers is
always faster than accessing them by subscripts. However, from
the point of view of convenience in programming we should
observe the following:

Array elements should be accessed using pointers if the elements
are to be accessed in a fixed order, say from beginning to end, or
from end to beginning, or every alternate element or any such
definite logic.

Instead, it would be easier to access the elements using a subscript
if there is no fixed logic in accessing the elements. However, in
this case also, accessing the elements by pointers would work
faster than subscripts.

Passing an Entire Array to a Function

In the previous section we saw two programs—one in which we
passed individual elements of an array to a function, and another in
which we passed addresses of individual elements to a function.
Let us now see how to pass an entire array to a function rather than
its individual elements. Consider the following example:

* Demonstration of passing an entire array to a function */
main()
{
int num[]={24,34,12,44,56,17};
dislpay (&num[0], 6) ;
}

display (int *j,int n)

Chapter 8: Arrays 287

int i;
for(i=0;i<=n-1;itt)

printf ("\nelement = %d", ¥) ;
j++; [¥increment pointer to point to next element */
}
}

Here, the display() function is used to print out the array
elements. Note that the address of the zeroth element is being
passed to the display() function. The for loop is same as the one
used in the earlier program to access the array elements using
pointers. Thus, just passing the address of the zeroth element of the
array to a function is as good as passing the entire array to the
function. It is also necessary to pass the total number of elements
in the array, otherwise the display() function would not know
when to terminate the for loop. Note that the address of the zeroth
element (many a times called the base address) can also be passed
by just passing the name of the array. Thus, the following two
function calls are same:

display (&numi[0], 6) ;
display (num, 6) ;

The Real Thing

If you have grasped the concept of storage of array elements in
memory and the arithmetic of pointers, here is some real food for
thought. Once again consider the following array.

24 34 12 44 56 17
65512 65514 65516 65518 65520 65522

Figure 8.3

288 Let Us C

This is how we would declare the above array in C,
int num[]={24, 34,12, 44,56, 17};

We also know that on mentioning the name of the array we get its
base address. Thus, by saying *num we would be able to refer to
the zeroth element of the array, that is, 24. One can easily see that
*num and *(num + 0) both refer to 24.

Similarly, by saying *(num + 1) we can refer the first element of
the array, that is, 34. In fact, this is what the C compiler does
internally. When we say, num[i], the C compiler internally
converts it to *(num + i). This means that all the following
notations are same:

numi]
*(num +i)
*(i+num)
ifnum]

And here is a program to prove my point.

[* Accessing array elements in different ways */
main()
{
int num[]={24, 34,12, 44,56,17};
int i;
for (i=0;i<=5;i++)
printf ("\naddress = %u ", &num[i]) ;
printf ("element = %d %d ", num([i], *(num +i)) ;
printf ("%d %d", *(i+ num), i[num]) ;

}
}

The output of this program would be:

Chapter 8: Arrays 289

address = 65512 element = 24 24 24 24
address = 65514 element = 34 34 34 34
address = 65516 element =12 12 12 12
address = 65518 element = 44 44 44 44
address = 65520 element = 56 56 56 56
address = 65522 element =17 17 17 17

Two Dimensional Arrays

So far we have explored arrays with only one dimension. It is also
possible for arrays to have two or more dimensions. The two-
dimensional array is also called a matrix.

Here is a sample program that stores roll number and marks
obtained by a student side by side in a matrix.

main()

int stud[4]2] ;
inti,j;
for(i=0;i<=3;i++)

{

printf ("\n Enter roll no. and marks") ;
scanf ("%d %d", &stud[i][0], &stud][i]{1]) ;
}

for (i=0;i<=3;i++)
printf ("\n%d %d", stud[i][0], stud[i][1]) ;
}
There are two parts to the program—in the first part through a for
loop we read in the values of roll no. and marks, whereas, in
second part through another for loop we print out these values.

Look at the scanf() statement used in the first for loop:

scanf ("%d %d", &stud[ijj0], &studfi[1])

290 Let Us C

In stud[i][0] and stud[i][1] the first subscript of the variable stud,
is row number which changes for every student. The second
subscript tells which of the two columns are we talking about—the
zeroth column which contains the roll no. or the first column
which contains the marks. Remember the counting of rows and
columns begin with zero. The complete array arrangement is
shown below.

col. no. 0 col. no. 1
row no. 0 1234 56
row no. 1 1212 33
row no. 2 1434 80
row no. 3 1312 78

Figure 8.4

Thus, 1234 is stored in stud[0][0], 56 is stored in stud[0][1] and
so on. The above arrangement highlights the fact that a two-
dimensional array is nothing but a collection of a number of one-
dimensional arrays placed one below the other.

In our sample program the array elements have been stored
rowwise and accessed rowwise. However, you can access the array
elements columnwise as well. Traditionally, the array elements are
being stored and accessed rowwise; therefore we would also stick
to the same strategy.

Initialising a 2-Dimensional Array

How do we initialize a two-dimensional array? As simple as this...

Chapter 8: Arrays 291

int stud[4][2] = {
{1234, 56},
{1212, 33},
{1434,80},
{1312, 78}
}s

or even this would work...

int stud[4][2] = { 1234, 56, 1212, 33, 1434, 80, 1312, 78} ;

of course with a corresponding loss in readability.

It is important to remember that while initializing a 2-D array it is
necessary to mention the second (column) dimension, whereas the
first dimension (row) is optional.

Thus the declarations,

int arr2)[3] = { 12, 34, 23, 45, 56, 45} ;
int arr][3] = { 12, 34, 23, 45, 56, 45}

are perfectly acceptable,
whereas,

int arr2][]1={12, 34, 23, 45,56, 45} ;
int arr[|[]1={12, 34, 23, 45,56, 45 } ;

would never work.

Memory Map of a 2-Dimensional Array

Let us reiterate the arrangement of array elements in a two-
dimensional array of students, which contains roll nos. in one
column and the marks in the other.

292 Let Us C

The array arrangement shown in Figure 8.4 is only conceptually
true. This is because memory doesn’t contain rows and columns.
In memory whether it is a one-dimensional or a two-dimensional
array the array elements are stored in one continuous chain. The
arrangement of array elements of a two-dimensional array in
memory is shown below:

s[O][0] s[O][1] s[1][0] s[il[1] s[2][0] sf2][1] s[3][0] s[3][1]
1234 | 56 | 1212 | 33 | 1434 | 80 | 1312 | 78 I

65508 65510 65512 65514 65516 65518 65520 65522

Figure 8.5

We can easily refer to the marks obtained by the third student
using the subscript notation as shown below:

printf ("Marks of third student = %d", stud[2][1]) ;

Can we not refer the same element using pointer notation, the way
we did in one-dimensional arrays? Answer is yes. Only the
procedure is slightly difficult to understand. So, read on...

Pointers and 2-Dimensional Arrays

The C language embodies an unusual but powerful capability—it
can treat parts of arrays as arrays. More specifically, each row of a
two-dimensional array can be thought of as a one-dimensional
array. This is a very important fact if we wish to access array
elements of a two-dimensional array using pointers.

Thus, the declaration,

int s[5][2] ;

Chapter 8: Arrays 293

can be thought of as setting up an array of 5 elements, each of
which is a one-dimensional array containing 2 integers. We refer
to an element of a one-dimensional array using a single subscript.
Similarly, if we can imagine s to be a one-dimensional array then
we can refer to its zeroth element as s[0], the next element as s[1]
and so on. More specifically, s[0] gives the address of the zeroth
one-dimensional array, s[1] gives the address of the first one-
dimensional array and so on. This fact can be demonstrated by the
following program.

* Demo: 2-D array is an array of arrays */

main()
{
int s[4][2] ={
{1234, 56},
{1212, 33},
{1434, 80},
{1312,78}
b
int i;

for(i=0;i<=3;itt)
printf ("\nAddress of %d th 1-D array = %u", i, S[i]) ;
}

And here is the output...

Address of 0 th 1-D array = 65508
Address of 1 th 1-D array = 65512
Address of 2 th 1-D array = 65516
Address of 3 th 1-D array = 65520

Let’s figure out how the program works. The compiler knows that
s is an array containing 4 one-dimensional arrays, each containing
2 integers. Each one-dimensional array occupies 4 bytes (two
bytes for each integer). These one-dimensional arrays are placed
linearly (zeroth 1-D array followed by first 1-D array, etc.). Hence

294 Let Us C

each one-dimensional arrays starts 4 bytes further along than the
last one, as can be seen in the memory map of the array shown
below.

s[O][0] s[O1[2] s[i][0] s[LI[X] sf2][0] s[2][1] s[3][O] s[3][1]
1234 | 56 | 1212 | 33 | 1434 | 80 | 1312 | 78

65508 65510 65512 65514 65516 65518 65520 65522

Figure 8.6

We know that the expressions s[0] and s[1] would yield the
addresses of the zeroth and first one-dimensional array
respectively. From Figure 8.6 these addresses turn out to be 65508
and 65512.

Now, we have been able to reach each one-dimensional array.
What remains is to be able to refer to individual elements of a one-
dimensional array. Suppose we want to refer to the element s[2][1]
using pointers. We know (from the above program) that s[2] would
give the address 65516, the address of the second one-dimensional
array. Obviously (65516 + 1) would give the address 65518. Or
(s[2] + 1) would give the address 65518. And the value at this
address can be obtained by using the value at address operator,
saying *(s[2] + 1). But, we have already studied while learning
one-dimensional arrays that numl[i] is same as *(num + i).
Similarly, *(s[2] + 1) issame as, *(*(s+2)+ 1). Thus, all the
following expressions refer to the same element,

s[2][1]
*(s[2]+1)
((s+2)+1)

Chapter 8: Arrays 295

Using these concepts the following program prints out each
element of a two-dimensional array using pointer notation.

[* Pointer notation to access 2-D array elements */

main()
int s[4][2] ={
{1234, 56},
{1212, 33},
{1434,80},
{1312,78}
b
int i, j;

for (i=0;i<=3;i++)

printf ("\n") ;
for (j=0;j<=1;j++)
printf ("%d ", *(*(s+i)+]));

}

And here is the output...

1234 56
1212 33
1434 80
1312 78

Pointer to an Array

If we can have a pointer to an integer, a pointer to a float, a pointer
to a char, then can we not have a pointer to an array? We certainly
can. The following program shows how to build and use it.

296 Let Us C

* Usage of pointer to an array */
main()

int s[5][2] = {

{1234, 56},
{1212, 33},
{1434, 80},
{1312,78}
b
int (*p)[2];
int i,], *pint ;
for(i=0;i<=3;i++)
{
p = &sfi];
pint=p;
printf ("\n") ;
for(j=0;j<=1;j++)
printf ("%d ", *(pint +)) ;
}
}
And here is the output...
1234 56
1212 33
1434 80
1312 78

Here p is a pointer to an array of two integers. Note that the
parentheses in the declaration of p are necessary. Absence of them
would make p an array of 2 integer pointers. Array of pointers is
covered in a later section in this chapter. In the outer for loop each
time we store the address of a new one-dimensional array. Thus
first time through this loop p would contain the address of the
zeroth 1-D array. This address is then assigned to an integer
pointer pint. Lastly, in the inner for loop using the pointer pint we

Chapter 8: Arrays 297

have printed the individual elements of the 1-D array to which p is
pointing.

But why should we use a pointer to an array to print elements of a
2-D array. Is there any situation where we can appreciate its usage
better? The entity pointer to an array is immensely useful when we

need to pass a 2-D array to a function. This is discussed in the next
section.

Passing 2-D Array to a Function

There are three ways in which we can pass a 2-D array to a
function. These are illustrated in the following program.

* Three ways of accessing a 2-D array */
main()

int a[3][4] = {

© Ul
ocooN
P ~Nw
o © N

b

clrser() ;

display (&, 3,4);

show (a, 3,4);

print(a, 3,4);
}
display (int *q, int row, int col)
{

inti,j;

for (i=0;i<row;i+t+)
{
for (j=0;j<col;j++)
printf ("%d ", * (g +i*col +]));

298 Let Us C

printf ("\n") ;
}
printf ("\n") ;
}

show (int (*q)[4], int row, int col)
{

int i, j;

int *p;

for(i=0;i<row;i++)
{ |
p=qg+l;
for (j=0;j<col;j++)
printf ("%d ", * (p +])) ;

printf ("\n") ;

}
printf ("\n") ;

}

print (int g[][4], int row, int col)
{

inti,j;

for (i=0;i<row;i++)

{
for (j=0;j<col;j++)

printf ("%d ", qfil[]) ;

printf ("\n") ;

}

printf ("\n") ;

}

And here is the output...

1234
5678

Chapter 8: Arrays 299

9016

1234
5678
9016

1234
5678
9016

In the display() function we have collected the base address of the
2-D array being passed to it in an ordinary int pointer. Then
through the two for loops using the expression * (q + i * col +)
we have reached the appropriate element in the array. Suppose i is
equal to 2 and j is equal to 3, then we wish to reach the element
a[2][3]. Let us see whether the expression * (q + i * col + j) does
give this element or not. Refer Figure 8.7 to understand this.

1 2 3 4 5 6 71 8 9 0 1 6
65502...04 ...06 ...08 ...10 ...12 ...14...16 ...18 ...20 ...22 ...24

Figure 8.7

The expression * (q + i * col + J) becomes * (65502 + 2 * 4 + 3).
This turns out to be * (65502 + 11). Since 65502 is address of an
integer, * (65502 + 11) turns out to be * (65524). Value at this
address is 6. This is indeed same as a[2][3]. A more general
formula for accessing each array element would be:

* (base address + row no. * no. of columns + column no.)

In the show() function we have defined q to be a pointer to an
array of 4 integers through the declaration:

300 Let Us C

int (*q)[4];

To begin with, q holds the base address of the zeroth 1-D array,
i.e. 4001 (refer Figure 8.7). This address is then assigned to p, an
int pointer, and then using this pointer all elements of the zeroth 1-
D array are accessed. Next time through the loop when i takes a
value 1, the expression q + i fetches the address of the first 1-D
array. This is because, q is a pointer to zeroth 1-D array and
adding 1 to it would give us the address of the next 1-D array. This
address is once again assigned to p, and using it all elements of the
next 1-D array are accessed.

In the third function print(), the declaration of q looks like this:
int qf J{4];

This is same as int (*q)[4], where q is pointer to an array of 4
integers. The only advantage is that we can now use the more
familiar expression q[i][j] to access array elements. We could have
used the same expression in show() as well.

Array of Pointers

The way there can be an array of ints or an array of floats,
similarly there can be an array of pointers. Since a pointer variable
always contains an address, an array of pointers would be nothing
but a collection of addresses. The addresses present in the array of
pointers can be addresses of isolated variables or addresses of
array elements or any other addresses. All rules that apply to an
ordinary array apply to the array of pointers as well. | think a
program would clarify the concept.

main()

{

int *arr{4] ; /* array of integer pointers */

Chapter 8: Arrays 301

int i=31,j=5k=19,1=71, m;

arr[0] = & ;
arr[1] = &j ;
arr[2] = &k ;
arr[3] = &l;

for(m=0;m <=3;m++)
printf ("%d ", * (arrm])) ;
}

Figure 8.8 shows the contents and the arrangement of the array of
pointers in memory. As you can observe, arr contains addresses of
isolated int variables i, j, k and I. The for loop in the program
picks up the addresses present in arr and prints the values present
at these addresses.

i j k I
31 | 5 | 19 | 71 |
65516 65514 65512 65510

arr[0] arr[1] arr[2] arr[3]
65516 | 65514 | 65512 | 65510

65518 65520 65522 65524

Figure 8.8

An array of pointers can even contain the addresses of other
arrays. The following program would justify this.

main()

staticint a[]={0,1,2,3,4};

302 Let Us C

int *p[]={a,a+1l,a+2,a+3,a+4};

printf ("\n%u %u %d", p, *p, * (*p)) ;
}

I would leave it for you to figure out the output of this program.

Three-Dimensional Array

We aren’t going to show a programming example that uses a three-
dimensional array. This is because, in practice, one rarely uses this
array. However, an example of initializing a three-dimensional
array will consolidate your understanding of subscripts:

int arr[3][4]12] ={

{2,4},
{7.8},
{3,4}
{56}
h
{
{7.6},
{3,4}
{53},
{2,3}
h
{
{8,9}
{7.2},
{3,4}
{51}
}

}s

A three-dimensional array can be thought of as an array of arrays
of arrays. The outer array has three elements, each of which is a

Chapter 8: Arrays 303

two-dimensional array of four one-dimensional arrays, each of
which contains two integers. In other words, a one-dimensional
array of two elements is constructed first. Then four such one-
dimensional arrays are placed one below the other to give a two-
dimensional array containing four rows. Then, three such two-
dimensional arrays are placed one behind the other to yield a three-
dimensional array containing three 2-dimensional arrays. In the
array declaration note how the commas have been given. Figure
8.9 would possibly help you in visualising the situation better.

2" 2-D Array ! 8 | 9 i

1%2-D Array —————| 7|

0" 2-D Array !

Figure 8.9

Again remember that the arrangement shown above is only
conceptually true. In memory the same array elements are stored
linearly as shown in Figure 8.10.

«— 0" 2-D Array—>[«— 1% 2-D Array—*+— 2" 2-D Array—*
2|4|7|8|3|4|5|6|7|6[3]4|5/3|2|3|8|9]|7|2|3]4]|5|1
65478 65494 65510

Figure 8.10

304 Let Us C

How would you refer to the array element 1 in the above array?
The first subscript should be [2], since the element is in third two-
dimensional array; the second subscript should be [3] since the
element is in fourth row of the two-dimensional array; and the
third subscript should be [1] since the element is in second position
in the one-dimensional array. We can therefore say that the
element 1 can be referred as arr[2][3][1]. It may be noted here that
the counting of array elements even for a 3-D array begins with
zero. Can we not refer to this element using pointer notation? Of
course, yes. For example, the following two expressions refer to
the same element in the 3-D array:

an{2]3][1]
(Y(*arr+2)+3)+1)

Summary

(@ An array is similar to an ordinary variable except that it can
store multiple elements of similar type.

(b) Compiler doesn’t perform bounds checking on an array.

(c) The array variable acts as a pointer to the zeroth element of
the array. In a 1-D array, zeroth element is a single value,
whereas, in a 2-D array this element is a 1-D array.

(d) On incrementing a pointer it points to the next location of its
type.

(e) Array elements are stored in contiguous memory locations
and so they can be accessed using pointers.

(F) Only limited arithmetic can be done on pointers.

Exercise
Simple arrays

[A] What would be the output of the following programs:

(@ main()

Chapter 8: Arrays

305

[B]

{

int num([26], temp ;

num[0] = 100 ;

num[25] = 200 ;

temp = num[25] ;

num[25] = num[0] ;

num[0] = temp ;

printf ("\n%d %d", num[0], num[25]) ;
}

main()
{
int array[26],i;
for (i=0;i<=25;i++)

array[i] = 'A" +1;
printf ("\n%d %c", array[i], array[i]) ;
}
}

main()
{
int sub[50],i;
for (i=0;i<=48;i++);
{
subfi] =1i;
printf ("\n%d", subli]) ;
}
}

Point out the errors, if any, in the following
segments:

[* mixed has some char and some int values */
int char mixed[100] ;

main()

{
int a[10],i;

program

306 Let Us C

for(i=1;i<=10;i++)

scanf ("%d", a[i]) ;
printf ("%d", afi]) ;
}
}

(b) main()
{
int size ;
scanf ("%d", &size) ;
int arr[size] ;
for(i=1;i<=size;i++)
{
scanf ("%d", arrfi]) ;
printf ("%d", artfi]) ;
}
}
() main()
{
inti,a=2,b=3:
int an[2+3];
for (i=0;i<ath;i++)
{
scanf ("%d", &arr[i]) ;
printf ("\n%d", arr[i]) ;
}
}

[C] Answer the following:

(@) Anarray is a collection of

1. different data types scattered throughout memory
2. the same data type scattered throughout memory
3. the same data type placed next to each other in memory
4. different data types placed next to each other in memory

Chapter 8: Arrays 307

(b)

(©)

(d)

(€)

[O]
(a)

Are the following array declarations correct?

int a(25);

int size = 10, b[size] ;

intc={0,1,2};

Which element of the array does this expression reference?

num4]

What is the difference between the 5’s in these two
expressions? (Select the correct answer)

int num[5] ;

num[5]=11;

1. firstis particular element, second is type

2. firstis array size, second is particular element
3. firstis particular element, second is array size
4. both specify array size

State whether the following statements are True or False:

=

The array int num[26] has twenty-six elements.

2. The expression num[1] designates the first element in the
array

3. It is necessary to initialize the array at the time of
declaration.

4. The expression num[27] designates the twenty-eighth

element in the array.

Attempt the following:

Twenty-five numbers are entered from the keyboard into an
array. The number to be searched is entered through the
keyboard by the user. Write a program to find if the number to
be searched is present in the array and if it is present, display
the number of times it appears in the array.

308 Let Us C

(b) Twenty-five numbers are entered from the keyboard into an
array. Write a program to find out how many of them are
positive, how many are negative, how many are even and how
many odd.

(c) Implement the Selection Sort, Bubble Sort and Insertion sort
algorithms on a set of 25 numbers. (Refer Figure 8.11 for the
logic of the algorithms)

— Selection sort
— Bubble Sort
— Insertion Sort

Selection Sort
Iteration 1 Iteration 2
0 44:| 33] 33 22 ol 11 ol 11 0| 11
11|33 44 44 44 1| 44 :I 1| 44 1| 33
21|55 55 55 55 2| 55 2|55 :| 2| 55
3| 22 22 22 33 3| 33 3|33 3| 44
4| 11 11 11 11 4] 22 41 22 4| 22
Iteration 3 Iteration 4
Result
0| 11 0| 11 0|11 0| 11
1| 22 1| 22 1|22 1| 22
2| 55 .—_| 2| 44 21|33 2|33
3| 44 3| 55 :| 3|55 :| 3| 44
4| 33 4| 33 4| 44 4 55

Figure 8.11 (a)

Chapter 8: Arrays

309

Bubble Sort
Iteration 1 Iteration 2
0| 44 .__l 33 33 33 0| 33 .__| ol 33 0| 33
1| 33 44 :I 44 44 1| 44 1| 44 :l 1| 22
2| 55 55 55 :I 22 2| 22 2| 22 2| 44 :I
3| 22 22 22 55 :I 3|11 3l 11 3| 11
4| 11 11 11 11 4| 55 4| 55 4| 55
Iteration 3 Iteration 4
Result
ol 33 :I 0| 22 0| 22 .__| ol 11
1| 22 1| 33 .__I 1] 11 1| 22
2l 11 2| 11 2|33 2| 33
3| 44 3| 44 3|44 3| 44
4| 55 4| 55 4|55 4| 55
Figure 8.11 (b)
Insertion Sort
Iteration 1 Iteration 2 Iteration 3 lteration4 Result
44 33 33 22 011
33 44 44 33 1|22
55 55 55 44 2|33
22 22 22 55 3| 44
11 11 11 11 4| 55

Figure 8.11 (c)

310 Let Us C

(d) Implement the following procedure to generate prime
numbers from 1 to 100 into a program. This procedure is
called sieve of Eratosthenes.

step1 Fill an array num[100] with numbers from 1 to 100

step 2 Starting with the second entry in the array, set all its
multiples to zero.

step 3 Proceed to the next non-zero element and set all its
multiples to zero.

step4 Repeat step 3 till you have set up the multiples of
all the non-zero elements to zero

step5 At the conclusion of step 4, all the non-zero entries
left in the array would be prime numbers, so print
out these numbers.

More on arrays, Arrays and pointers

[E] What would be the output of the following programs:

(@ main()
{
int b[]={10, 20, 30, 40,50} ;
int i;

for(i=0;i<=4;i++)
printf ("\n%d" *(b +1i)) ;
}

(b) main()
{
int b[]={0,20,0,40,5};
int i, *k ;
k=b;
for(i=0;i<=4;i++)

printf ("\n%d" *k) ;

Chapter 8: Arrays 311

}

kK++:

}

() main()

{

}

int a[]={2,4,6,810};

int i;

change (a,5);

for (i=0;i<=4;i++)
printf("\n%d", a[i]) ;

change (int *b, int n)

{

}

int i;
for(i=0;i<n;i+t)
(b+i)=*b+i)+5;

(d) main()

{

int a[5],i,b=16;

for(i=0;i<5;i++)
alij=2*i;

f(ab);

for (i=0;i<5;i++)
printf ("\n%d", a[i]) ;

printf("\n%d", b) ;

}
f(int *x,int y)
{

}

int i;
for(i=0;i<5;i++)
(x+i)+=2;

y+=2;

312 Let Us C

() main()

static int a[5] ;

int i;

for (i=0;i<=4;i++)
printf ("\n%d", ai]) ;

}
(main()
{
int a[5] ={5, 1, 15, 20, 25} ;
inti,jk=1,m;
1= ++a[l];
j=all]+;
m = afi++] ;
printf ("\n%d %d %d", i,j, m) ;
}

[F] Point out the errors, if any, in the following programs:
(@ main()

int array[6]={1,2,3,4,56};
int i;
for(i=0;i<=25;i++)
printf ("\n%d", array[i]) ;
}

(b) main()

int sub[50], i ;
for (i=1;i<=50;i++)
{
subli] =i ;
printf ("\n%d" , subli]) ;
}
}

Chapter 8: Arrays 313

() main()

int a[]={10, 20, 30, 40,50} ;
int j;
j=a; [*store the address of zeroth element */
j=i+3;
printf ("\n%d" *j) ;
}

(d) main()

{
float a[]={13.24,15,15,5.4,35};
float *j;
j=a;
j=i+4;
printf ("\n%d %d %d", |, ¥}, a[4]) ;

}

() main()

{
float a[]={13.24,1.5,15,54,35};
float *, *k ;
j=a;
k=a+4;
j=i*2;
k=k/2;
printf ("\n%d %d", ¥, *k) ;

}

(N main()
{
int max=5;
float arr[max] ;
for (i=0;i<max;i+t)
scanf ("%f", &arr[i]) ;

314 Let UsC

[G] Answer the following:

(@)

(b)

()

(d)

(e)

What would happen if you try to put so many values into an
array when you initialize it that the size of the array is
exceeded?

1. nothing

2. possible system malfunction

3. error message from the compiler
4. other data may be overwritten

In an array int arr[12] the word arr represents the
a of the array

What would happen if you put too few elements in an array
when you initialize it?

1. nothing

2. possible system malfunction

3. error message from the compiler

4. unused elements will be filled with 0’s or garbage

What would happen if you assign a value to an element of an
array whose subscript exceeds the size of the array?

the element will be set to 0
nothing, it’s done all the time
other data may be overwritten
error message from the compiler

el N

When you pass an array as an argument to a function, what
actually gets passed?

address of the array

values of the elements of the array
address of the first element of the array
number of elements of the array

PR

Chapter 8: Arrays 315

(f) Which of these are reasons for using pointers?

1. To manipulate parts of an array

2. To refer to keywords such as for and if

3. To return more than one value from a function

4. To refer to particular programs more conveniently

(g) If you don’t initialize a static array, what would be the
elements set to?

0

an undetermined value

a floating point number
the character constant \0'

PR

[H] State True or False:

(@) Address of a floating-point variable is always a whole
number.

(b) Which of the following is the correct way of declaring a float
pointer:

5. float ptr;

6. float *ptr;

7. *float ptr ;

8. None of the above

(c) Add the missing statement for the following program to print
35.

main()
.
int j, *ptr;
*ptr=35;
printf ("\n%d", j) ;
}

316 Let Us C

(d)

[1]
(@)

(b)

(©)
(d)

(€)

if int s[5] is a one-dimensional array of integers, which of the
following refers to the third element in the array?

9. *(s+2)
10. *(s+3)
11.s+3
12. s+ 2

Attempt the following:

Write a program to copy the contents of one array into another
in the reverse order.

If an array arr contains n elements, then write a program to
check if arr[0] = arr[n-1], arr[1] = arr[n-2] and so on.

Find the smallest number in an array using pointers.
Write a program which performs the following tasks:

— initialize an integer array of 10 elements in main()

— pass the entire array to a function modify()

— in modify(') multiply each element of array by 3

— return the control to main() and print the new array
elements in main()

The screen is divided into 25 rows and 80 columns. The
characters that are displayed on the screen are stored in a
special memory called VDU memory (not to be confused with
ordinary memory). Each character displayed on the screen
occupies two bytes in VDU memory. The first of these bytes
contains the ASCII value of the character being displayed,
whereas, the second byte contains the colour in which the
character is displayed.

For example, the ASCII value of the character present on
zeroth row and zeroth column on the screen is stored at

Chapter 8: Arrays 317

location number 0xB8000000. Therefore the colour of this
character would be present at location number 0xB8000000 +
1. Similarly ASCII value of character in row 0, col 1 will be at
location 0xB8000000 + 2, and its colour at 0xB8000000 + 3.

With this knowledge write a program which when executed
would keep converting every capital letter on the screen to
small case letter and every small case letter to capital letter.
The procedure should stop the moment the user hits a key
from the keyboard.

This is an activity of a rampant Virus called Dancing Dolls.
(For monochrome adapter, use 0xB0000000 instead of
0xB8000000).

More than one dimension

[J] What would be the output of the following programs:

@)

(b)

main()
{
int n[3][3] ={
2,4,3,
6,8, 5,
3,51
3
printf ("\n%d %d %d", *n, n[3][3], n[2][2]) ;
}
main()
int n[3][3] ={
2,4,3,
6,8, 5,
3,51
b

int i, *ptr;

318

Let UsC

ptr=n;
for (i=0;i<=8;i++)

}

() main()

{
int n[3]3] ={

printf ("\n%d", *(ptr+i));

Lo
0~
= o1 w

-k

int i, j;

for(i=0;i<=2;i++)
for(j=0;j<=2;j++)

printf ("\n%d %d", n[i][j], *(*(n+i) +j)):

}

[K] Point out the errors, if any, in the following programs:

(@ main()

int twod[J[] = {
2.4,
6.8

printf ("\n%d", twod)
}

(b) main()

{
int three[3][]={

~po
w o
o ow

b
printf ("\n%d", three[1][1]) ;

Chapter 8: Arrays 319

}
[L] Attempt the following:

(@ How will you initialize a three-dimensional array
threed[3][2][3]? How will you refer the first and last element
in this array?

(b) Write a program to pick up the largest number from any 5 row
by 5 column matrix.

(c) Write a program to obtain transpose of a 4 x 4 matrix. The
transpose of a matrix is obtained by exchanging the elements
of each row with the elements of the corresponding column.

(d) Very often in fairs we come across a puzzle that contains 15
numbered square pieces mounted on a frame. These pieces
can be moved horizontally or vertically. A possible
arrangement of these pieces is shown below:

1 4 15 7

8 10 2 11
14 3 6 13
12 9 5

Figure 8.12

As you can see there is a blank at bottom right corner.
Implement the following procedure through a program:

320 Let Us C

Draw the boxes as shown above. Display the numbers in the
above order. Allow the user to hit any of the arrow keys (up,
down, left, or right).

If user hits say, right arrow key then the piece with a number
5 should move to the right and blank should replace the
original position of 5. Similarly, if down arrow key is hit, then
13 should move down and blank should replace the original
position of 13. If left arrow key or up arrow key is hit then no
action should be taken.

The user would continue hitting the arrow keys till the
numbers aren’t arranged in ascending order.

Keep track of the number of moves in which the user manages
to arrange the numbers in ascending order. The user who
manages it in minimum number of moves is the one who
wins.

How do we tackle the arrow keys? We cannot receive them
using scanf() function. Arrow keys are special keys which
are identified by their ‘scan codes’. Use the following
function in your program. It would return the scan code of the
arrow key being hit. Don’t worry about how this function is
written. We are going to deal with it later. The scan codes for
the arrow keys are:

up arrow key — 72 down arrow key — 80
left arrow key — 75 right arrow key — 77

I* Returns scan code of the key that has been hit */
#include "dos.h"

getkey()

{
union REGS i, 0;

Chapter 8: Arrays 321

while (kbhit())

ihah=0;
int86 (22, &i, &0) ;
return (o.h.ah) ;

}

(e) Those readers who are from an Engineering/Science

(f)

background may try writing programs for following problems.

(1) Write a program to add two 6 x 6 matrices.

(2) Write a program to multiply any two 3 x 3 matrices.

(3) Write a program to sort all the elements of a 4 x 4 matrix.

(4) Write a program to obtain the determinant value of a 5 x
5 matrix.

Match the following with reference to the following program
segment:

int i, j, =25;

int *pi, *pj = & j;

/* more lines of program */
pi=j+5

1= *Pl +5;

Pl =0,

*pi=i+]

Each integer quantity occupies 2 bytes of memory. The value
assigned to i begin at (hexadecimal) address FOC and the
value assigned to j begins at address FOE. Match the value
represented by left hand side quantities with the right.

1. &i a. 30
2. &j b. F9E
3. pj c. 35
4, *pj d. FA2

322 Let Us C

(@)

(h)

5. i e. FoC
6. pi f. 67
7. *pi g. unspecified
8. (pi+2) h. 65
9. (*pi +2) i. FOE
10. *(pi+2) J. FOE
K. FAO
l. FoD

Match the following with reference to the following segment:
int X[3][5] = {
{1,2,3,4,5},
{6,7,8,9,10},
{11, 12, 13, 14, 15}
}*n=&x;
1. *(*(x+2)+1) a. 9
2. *(*x+2)+5 b. 13
3. *(*(x+1)) C. 4
4. *(*(x)+2)+1 d. 3
5. *(*(x+1)+3) e. 2
6. *n f. 12
7. *(n+2) g. 14
8. (*(n+3)+1 h. 7
9. *(n +5)+1 i 1
10. ++*n J. 8
k. 5
. 10
m. 6

Match the following with reference to the following program
segment:

struct

{ .
int XYy,
}s[1={10, 20, 15, 25, 8, 75, 6, 2 };
int *;
i=s;

Chapter 8: Arrays 323

1. *(i+3) a. 85
2. s[i[7]]-x b. 2
3. s[(s +2)->y /3[lI]].y C. 6
4. i[i[1]-i[2]] d. 7
5. i[s[3].y] e. 16
6. (s+1)>x+5 f. 15
7. L+)*(i+4)/*i g. 25
8. s[i[0] —i[4]].y + 10 h. 8
9. (*(s+*(i+1)/*i))x+2 i. 1
10. ++i[i[6]] J- 100
k. 10
l. 20
(i) Match the following with reference to the following program
segment:
unsigned int arr[3][3] = {
2,4,6,
9,1, 10,
16, 64,5
b
1. **arr a. 64
2. **Rarr < *(*arr+2) b. 18
3. *(arr+2)/(*(*arr+1)>**arr) c. 6
4. *(arr[1] + 1) | arr[1][2] d. 3
5. *(arr[0]) | *(arr[2]) e. 0
6. arr[1][1] < arr[0][1] f. 16
7. arr[2][[1] & arr[2][0] g. 1
8. arr[2][2] | arr[0][1] h. 11
9. arr[0][1] " arr[0][2] i. 20
10. ++**arr + --arr[1][1] j. 2
K. 5
l. 4

(J)) Write a program that interchanges the odd and even
components of an array.

(K) Write a program to find if a square matrix is symmetric.

324 Let UsC

(0

(m)

(n)

(0)

(p)

Write a function to find the norm of a matrix. The norm is
defined as the square root of the sum of squares of all
elements in the matrix.

Given an array p[5], write a function to shift it circularly left
by two positions. Thus, if p[0] = 15, p[1]= 30, p[2] = 28,
p[3]= 19 and p[4] = 61 then after the shift p[0] = 28, p[1] =
19, p[2] = 61, p[3] = 15 and p[4] = 30. Call this function for a
(4 x 5) matrix and get its rows left shifted.

A 6 x 6 matrix is entered through the keyboard and stored in a
2-dimensional array mat[7][7]. Write a program to obtain the
Determinant values of this matrix.

For the following set of sample data, compute the standard
deviation and the mean.

-6,-12, 8, 13,11, 6, 7, 2, -6, -9, -10, 11, 10, 9, 2
The formula for standard deviation is

v (Xi _;)2

n

where X; is the data item and x is the mean.

The area of a triangle can be computed by the sine law when 2
sides of the triangle and the angle between them are known.

Area=(1/2)absin (angle)

Given the following 6 triangular pieces of land, write a
program to find their area and determine which is largest,

Plot No. a b angle
1 137.4 80.9 0.78
2 155.2 92.62 0.89

3 149.3 97.93 1.35

Chapter 8: Arrays 325

4 160.0 100.25 9.00
5 155.6 68.95 1.25
6 149.7 120.0 1.75

(q) For the following set of n data points (x, y), compute the
correlation coefficient r, given by

o PR EPRIN
JIn X2 = (X1 y2 -3 v)*]
X y

34.22 102.43
39.87 100.93

41.85 97.43
43.23 97.81
40.06 98.32
53.29 98.32
53.29 100.07
54.14 97.08
49.12 91.59
40.71 94.85
55.15 94.65

(r) For the following set of point given by (x, y) fit a straight line
given by

y=a +bx

where,

NN SORIN
[y %" -2 %°]

X y
3.0 1.5

326 Let Us C

4.5 2.0
55 35
6.5 5.0
7.5 6.0
8.5 7.5
8.0 9.0
9.0 10.5
9.5 12.0
10.0 14.0

(s) The X and Y coordinates of 10 different points are entered
through the keyboard. Write a program to find the distance of
last point from the first point (sum of distance between
consecutive points).

9 Puppetting On
Strings

What are Strings

More about Strings

Pointers and Strings

Standard Library String Functions
strlen()

strepy()
strcat()

stremp()
Two-Dimensional Array of Characters
Array of Pointers to Strings
Limitation of Array of Pointers to Strings
Solution
Summary
Exercise

327

328 Let Us C

sizes and dimensions, how to initialize arrays, how to pass

arrays to a function, etc. With this knowledge under your belt,
you should be ready to handle strings, which are, simply put, a
special kind of array. And strings, the ways to manipulate them,
and how pointers are related to strings are going to be the topics of
discussion in this chapter.

I n the last chapter you learnt how to define arrays of differing

What are Strings

The way a group of integers can be stored in an integer array,
similarly a group of characters can be stored in a character array.
Character arrays are many a time also called strings. Many
languages internally treat strings as character arrays, but somehow
conceal this fact from the programmer. Character arrays or strings
are used by programming languages to manipulate text such as
words and sentences.

A string constant is a one-dimensional array of characters
terminated by a null (\0”). For example,

char name[]={'H','A",'E",'S", L', 'E','R,\0'};

Each character in the array occupies one byte of memory and the
last character is always ‘\0’. What character is this? It looks like
two characters, but it is actually only one character, with the \
indicating that what follows it is something special. “\0” is called
null character. Note that \0” and *0” are not same. ASCII value of
“\0” is 0, whereas ASCII value of ‘0’ is 48. Figure 9.1 shows the
way a character array is stored in memory. Note that the elements
of the character array are stored in contiguous memory locations.

The terminating null (\0”) is important, because it is the only way
the functions that work with a string can know where the string
ends. In fact, a string not terminated by a “\0’ is not really a string,
but merely a collection of characters.

Chapter 9: Puppetting On Strings 329

H A E S L E R \0
65518 65519 65520 65521 65522 65523 65524 65525

Figure 9.1

C concedes the fact that you would use strings very often and
hence provides a shortcut for initializing strings. For example, the
string used above can also be initialized as,

char name[]="HAESLER";

Note that, in this declaration “\0’ is not necessary. C inserts the
null character automatically.

More about Strings

In what way are character arrays different than numeric arrays?
Can elements in a character array be accessed in the same way as
the elements of a numeric array? Do | need to take any special care
of “\0°? Why numeric arrays don’t end with a “\0’? Declaring
strings is okay, but how do | manipulate them? Questions galore!!
Well, let us settle some of these issues right away with the help of
sample programs.

[* Program to demonstrate printing of a string */

main()
{
char name[] = "Klinsman" ;
inti=0;
while (i<=7)
{

printf ("%c", name[i]) ;
i++

}

330 Let Us C

}
And here is the output...
Klinsman

No big deal. We have initialized a character array, and then printed
out the elements of this array within a while loop. Can we write
the while loop without using the final value 7? We can; because
we know that each character array always ends with a “\0’.
Following program illustrates this.

main()
{
char name[] ="Klinsman" ;
inti=0;
while (name]i] 'I="\0")
{
printf ("%c", name[i]) ;
i++
}

}

And here is the output...

Klinsman

This program doesn’t rely on the length of the string (humber of
characters in it) to print out its contents and hence is definitely

more general than the earlier one. Here is another version of the
same program; this one uses a pointer to access the array elements.

main()

char name[] = "Klinsman" ;
char *ptr;

Chapter 9: Puppetting On Strings 331

ptr = name ; /* store base address of string */

while (*ptr!="\0")

{
printf ("%c", *ptr) ;
ptr++ ;

}

As with the integer array, by mentioning the name of the array we
get the base address (address of the zeroth element) of the array.
This base address is stored in the variable ptr using,

ptr = name ;

Once the base address is obtained in ptr, *ptr would yield the
value at this address, which gets printed promptly through,

printf ("%c", *ptr) ;

Then, ptr is incremented to point to the next character in the
string. This derives from two facts: array elements are stored in
contiguous memory locations and on incrementing a pointer it
points to the immediately next location of its type. This process is
carried out till ptr doesn’t point to the last character in the string,
that is, “\0’.

In fact, the character array elements can be accessed exactly in the
same way as the elements of an integer array. Thus, all the
following notations refer to the same element:

nameli]
*(name +1i)
*(i+name)
ifname]

332 Let Us C

Even though there are so many ways (as shown above) to refer to
the elements of a character array, rarely is any one of them used.
This is because printf() function has got a sweet and simple way
of doing it, as shown below. Note that printf() doesn’t print the
0.

main()

{
char name[] ="Klinsman" ;
printf ("%s", name) ;

}

The %s used in printf() is a format specification for printing out a
string. The same specification can be used to receive a string from
the keyboard, as shown below.

main()

{

char name[25] ;

printf ("Enter your name ") ;
scanf ("%s", name) ;
printf ("Hello %s!", name) ;

}

And here is a sample run of the program...

Enter your name Debashish
Hello Debashish!

Note that the declaration char name[25] sets aside 25 bytes under
the array name[], whereas the scanf() function fills in the
characters typed at keyboard into this array until the enter key is
hit. Once enter is hit, scanf() places a ‘\0’ in the array. Naturally,
we should pass the base address of the array to the scanf()
function.

Chapter 9: Puppetting On Strings 333

While entering the string using scanf() we must be cautious about
two things:

(@)

(b)

The length of the string should not exceed the dimension of
the character array. This is because the C compiler doesn’t
perform bounds checking on character arrays. Hence, if you
carelessly exceed the bounds there is always a danger of
overwriting something important, and in that event, you
would have nobody to blame but yourselves.

scanf() is not capable of receiving multi-word strings.
Therefore names such as ‘Debashish Roy’ would be
unacceptable. The way to get around this limitation is by
using the function gets(). The usage of functions gets() and
its counterpart puts() is shown below.

main()
char name[25] ;

printf ("Enter your full name ") ;
gets (name) ;

puts ("Hello!") ;

puts (name) ;

}

And here is the output...

Enter your name Debashish Roy
Hello!
Debashish Roy

The program and the output are self-explanatory except for
the fact that, puts() can display only one string at a time
(hence the use of two puts() in the program above). Also, on
displaying a string, unlike printf(), puts() places the cursor
on the next line. Though gets() is capable of receiving only

334 Let Us C

one string at a time, the plus point with gets() is that it can
receive a multi-word string.

If we are prepared to take the trouble we can make scanf()
accept multi-word strings by writing it in this manner:

char name[25] ;
printf ("Enter your full name ") ;
scanf ("%[™n]s", name) ;

Though workable this is the best of the ways to call a
function, you would agree.

Pointers and Strings

Suppose we wish to store “Hello”. We may either store it in a
string or we may ask the C compiler to store it at some location in
memory and assign the address of the string in a char pointer. This
is shown below:

char str[]="Hello";
char *p = "Hello";

There is a subtle difference in usage of these two forms. For
example, we cannot assign a string to another, whereas, we can
assign a char pointer to another char pointer. This is shown in the
following program.

main()

{
char strl[]="Hello";
char str2[10] ;

char *s ="Good Morning" ;
char *q;

Chapter 9: Puppetting On Strings 335

str2 = strl ; /* error */
q=s; *works *

}

Also, once a string has been defined it cannot be initialized to
another set of characters. Unlike strings, such an operation is
perfectly valid with char pointers.

main()

{
char strl[]="Hello";
char *p ="Hello";
strl = "Bye" ; /* error */
p ="Bye"; [* works */

}

Standard Library String Functions

With every C compiler a large set of useful string handling library
functions are provided. Figure 9.2 lists the more commonly used
functions along with their purpose.

Function | Use

strlen Finds length of a string

striwr Converts a string to lowercase

strupr Converts a string to uppercase

strcat Appends one string at the end of another

strncat Appends first n characters of a string at the end of
another

336 Let Us C

strcpy Copies a string into another

strncpy Copies first n characters of one string into another

stremp Compares two strings

strncmp Compares first n characters of two strings

strcmpi Compares two strings without regard to case ("i" denotes
that this function ignores case)

stricmp Compares two strings without regard to case (identical to
strcmpi)

strnicmp Compares first n characters of two strings without regard
to case

strdup Duplicates a string

strchr Finds first occurrence of a given character in a string

strrchr Finds last occurrence of a given character in a string

strstr Finds first occurrence of a given string in another string

strset Sets all characters of string to a given character

strnset Sets first n characters of a string to a given character

strrev Reverses string

Figure 9.2

Out of the above list we shall discuss the functions strlen(),
strcpy(), strcat() and strcmp(), since these are the most
commonly used functions. This will also illustrate how the library
functions in general handle strings. Let us study these functions
one by one.

strien()

This function counts the number of characters present in a string.
Its usage is illustrated in the following program.

main()

char arr[] = "Bamboozled" ;
int lenl, len2 ;

Chapter 9: Puppetting On Strings 337

lenl =strlen (arr) ;
len2 = strlen ("Humpty Dumpty") ;

printf ("\nstring = %s length = %d", arr, lenl) ;
printf ("\nstring = %s length = %d", "Humpty Dumpty", len2) ;
}

The output would be...

string = Bamboozled length = 10
string = Humpty Dumpty length = 13

Note that in the first call to the function strlen(), we are passing
the base address of the string, and the function in turn returns the
length of the string. While calculating the length it doesn’t count
\0’. Even in the second call,

len2 = strlen ("Humpty Dumpty") ;

what gets passed to strlen() is the address of the string and not the
string itself. Can we not write a function xstrlen() which imitates
the standard library function strlen()? Let us give it a try...

I* A look-alike of the function strlen() */
main()
{

char arr[] = "Bamboozled" ;

int lenl, len2 ;

lenl = xstrlen (arr) ;
len2 = xstrlen ("Humpty Dumpty") ;

printf ("\nstring = %s length = %d", arr, lenl) ;
printf ("\nstring = %s length = %d", "Humpty Dumpty", len2) ;

338 Let Us C

xstrlen (char *s)

{
int length=0;
while (*s 1="0")
{
length++ ;
S+t
}
return (length) ;
}

The output would be...

string = Bamboozled length = 10
string = Humpty Dumpty length = 13

The function xstrlen() is fairly simple. All that it does is keep
counting the characters till the end of string is not met. Or in other
words keep counting characters till the pointer s doesn’t point to
“\0’.

strepy()

This function copies the contents of one string into another. The
base addresses of the source and target strings should be supplied
to this function. Here is an example of strcpy() in action...

main()

char source[] = "Sayonara" ;

Chapter 9: Puppetting On Strings 339

char target[20] ;

strepy (target, source) ;
printf ("\nsource string = %s", source) ;
printf ("\ntarget string = %s", target) ;

}

And here is the output...

source string = Sayonara
target string = Sayonara

On supplying the base addresses, strcpy() goes on copying the
characters in source string into the target string till it doesn't
encounter the end of source string (\0”). It is our responsibility to
see to it that the target string’s dimension is big enough to hold the
string being copied into it. Thus, a string gets copied into another,
piece-meal, character by character. There is no short cut for this.
Let us now attempt to mimic strcpy(), via our own string copy
function, which we will call xstrcpy().

main()

{
char source[| = "Sayonara" ;
char target[20] ;

xstrepy (target, source) ;
printf ("\nsource string = %s", source) ;
printf ("\ntarget string = %s", target) ;

}
xstrepy (char *t, char *s)
{
while (*s1="0")
{
t=7s;

St+:

340 Let UsC

t++ ;

}
t=10';
}

The output of the program would be...

source string = Sayonara
target string = Sayonara

Note that having copied the entire source string into the target
string, it is necessary to place a ‘\O’ into the target string, to mark
its end.

If you look at the prototype of strcpy() standard library function,
it looks like this...

strcpy (char *t, const char *s) ;

We didn’t use the keyword const in our version of xstrcpy() and
still our function worked correctly. So what is the need of the
const qualifier?

What would happen if we add the following lines beyond the last
statement of xstrcpy()?.

$=5-8;
*s='K":

This would change the source string to “Kayonara”. Can we not
ensure that the source string doesn’t change even accidentally in
xstrcpy()? We can, by changing the definition as follows:

void xstrcpy (char *t, const char *s)

{
while (*s = 0")

{

Chapter 9: Puppetting On Strings

341

*t - *s .
St
t+

}

*t="0";

}

By declaring char *s as const we are declaring that the source
string should remain constant (should not change). Thus the const
qualifier ensures that your program does not inadvertently alter a
variable that you intended to be a constant. It also reminds
anybody reading the program listing that the variable is not

intended to change.

We can use const in several situations. The following code

fragment would help you to fix your ideas about const further.

char *p = "Hello" ; /* pointer is variable, so is string */
*n="M"; [*works *
p ="Bye"; [*works */

const char *q = "Hello" ; /* string is fixed pointer is not */
*q="M"; [*error*
q="Bye"; /*works*/

char const *s = "Hello" ; /* string is fixed pointer is not */
*s="M"; [*error*
s="Bye"; /*works */

char * const t = "Hello" ; /* pointer is fixed string is not */
="M [*works */
t="Bye"; /*error*/

const char * const u = "Hello" ; /* string is fixed so is pointer */
*u='M"; [*error*
u="Bye"; /*error*

342 LetUsC

The keyword const can be used in context of ordinary variables
like int, float, etc. The following program shows how this can be
done.

main()
{
floatr, a;
const float pi = 3.14 ;

printf ("\nEnter radius of circle ") ;
scanf ("%f", &r);

a=pi*r*r;

printf ("\nArea of circle = %f", a) ;

}

strcat()

This function concatenates the source string at the end of the target
string. For example, “Bombay” and “Nagpur” on concatenation
would result into a string “BombayNagpur”. Here is an example of
strcat() at work.

main()

{
char source[] = "Folks!";
char target[30] = "Hello" ;

strcat (target, source) ;
printf ("\nsource string = %s", source) ;
printf ("\ntarget string = %s", target) ;

}

And here is the output...

source string = Folks!
target string = HelloFolks!

Chapter 9: Puppetting On Strings 343

Note that the target string has been made big enough to hold the
final string. | leave it to you to develop your own xstrcat() on
lines of xstrlen() and xstrcpy().

stremp()

This is a function which compares two strings to find out whether
they are same or different. The two strings are compared character
by character until there is a mismatch or end of one of the strings
is reached, whichever occurs first. If the two strings are identical,
strcmp() returns a value zero. If they’re not, it returns the numeric
difference between the ASCII values of the first non-matching
pairs of characters. Here is a program which puts strcmp() in
action.

main()

{
char string1[] ="Jerry";

char string2[] = "Ferry";
inti,j,k;

i = stremp (stringl, "Jerry") ;
j = stremp (stringd, string2) ;
k = strcmp (string1, "Jerry boy") ;

printf ("\n%d %d %d", i, j, k) ;
}

And here is the output...
04-32

In the first call to strcemp(), the two strings are identical—"Jerry”
and “Jerry”—and the value returned by strcmp() is zero. In the
second call, the first character of “Jerry” doesn't match with the
first character of “Ferry” and the result is 4, which is the numeric

344 Let Us C

difference between ASCII value of ‘J” and ASCII value of ‘F’. In
the third call to strcmp() “Jerry” doesn’t match with “Jerry boy”,
because the null character at the end of “Jerry” doesn’t match the
blank in “Jerry boy”. The value returned is -32, which is the value
of null character minus the ASCII value of space, i.e., \O’ minus
7, which is equal to -32.

The exact value of mismatch will rarely concern us. All we usually
want to know is whether or not the first string is alphabetically
before the second string. If it is, a negative value is returned; if it
isn’t, a positive value is returned. Any non-zero value means there
is a mismatch. Try to implement this procedure into a function
xstremp().

Two-Dimensional Array of Characters

In the last chapter we saw several examples of 2-dimensional
integer arrays. Let’s now look at a similar entity, but one dealing
with characters. Our example program asks you to type your name.
When you do so, it checks your name against a master list to see if
you are worthy of entry to the palace. Here’s the program...

#define FOUND 1

#define NOTFOUND 0

main()

{

char masterlist[6][10] = {

"akshay",
"parag",
“raman”,
"srinivas”,
"gopal’,
"rajesh”

int i, flag, a;
char yourname[10] ;

Chapter 9: Puppetting On Strings 345

printf ("\nEnter your name ") ;
scanf ("%s", yourname) ;

flag = NOTFOUND ;
for (i=0;i<=5;i++)

{
a = stremp (&masterlist[i][0], yourname) ;
if(a==0)
{
printf ("Welcome, you can enter the palace") ;
flag = FOUND ;
break ;
}
}

if (flag == NOTFOUND)
printf ("Sorry, you are a trespasser”) ;

}
And here is the output for two sample runs of this program...

Enter your name dinesh

Sorry, you are a trespasser

Enter your name raman

Welcome, you can enter the palace

Notice how the two-dimensional character array has been
initialized. The order of the subscripts in the array declaration is
important. The first subscript gives the number of names in the
array, while the second subscript gives the length of each item in
the array.

Instead of initializing names, had these names been supplied from
the keyboard, the program segment would have looked like this...

for(i=0;i<=5;i++)
scanf ("%s", &masterlist[i][0]) ;

346 Let UsC

While comparing the strings through strcmp(), note that the
addresses of the strings are being passed to strcmp(). As seen in
the last section, if the two strings match, strcmp(') would return a
value 0, otherwise it would return a non-zero value.

The variable flag is used to keep a record of whether the control
did reach inside the if or not. To begin with, we set flag to
NOTFOUND. Later through the loop if the names match, flag is
set to FOUND. When the control reaches beyond the for loop, if
flag is still set to NOTFOUND, it means none of the names in the
masterlist[][] matched with the one supplied from the keyboard.

The names would be stored in the memory as shown in Figure 9.3.
Note that each string ends with a ‘\0’. The arrangement as you can
appreciate is similar to that of a two-dimensional numeric array.

65454 |a|k|s|h|a|ly [\

65464 |pla|r|a|g|\0

65474 | r |a | m| a \0

65484 |s|{r|i|n|i|v |a |s|\O

65494 | glo|pla |l |\O

65504 |rja|j|e|s|h [\O 65513

(last location)

Figure 9.3

Chapter 9: Puppetting On Strings 347

Here, 65454, 65464, 65474, etc. are the base addresses of
successive names. As seen from the above pattern some of the
names do not occupy all the bytes reserved for them. For example,
even though 10 bytes are reserved for storing the name “akshay”,
it occupies only 7 bytes. Thus, 3 bytes go waste. Similarly, for
each name there is some amount of wastage. In fact, more the
number of names, more would be the wastage. Can this not be
avoided? Yes, it can be... by using what is called an ‘array of
pointers’, which is our next topic of discussion.

Array of Pointers to Strings

As we know, a pointer variable always contains an address.
Therefore, if we construct an array of pointers it would contain a
number of addresses. Let us see how the names in the earlier
example can be stored in the array of pointers.

char *names|] = {
"akshay",
"parag",
“raman”,
"srinivas”,
"gopal’,
"rajesh”

}s

In this declaration names[] is an array of pointers. It contains base
addresses of respective names. That is, base address of “akshay” is
stored in names[0], base address of “parag” is stored in names[1]
and so on. This is depicted in Figure 9.4.

348 Let UsC

182 195 201
gopal\0 rajesh\0 parag\0
210 216 189
names|]
182 189 195 201 210 216

65514 65516 65518 65520 65522 65524

Figure 9.4

In the two-dimensional array of characters, the strings occupied 60
bytes. As against this, in array of pointers, the strings occupy only
41 bytes—a net saving of 19 bytes. A substantial saving, you
would agree. But realize that actually 19 bytes are not saved, since
12 bytes are sacrificed for storing the addresses in the array
names|]. Thus, one reason to store strings in an array of pointers
is to make a more efficient use of available memory.

Another reason to use an array of pointers to store strings is to
obtain greater ease in manipulation of the strings. This is shown by
the following programs. The first one uses a two-dimensional
array of characters to store the names, whereas the second uses an
array of pointers to strings. The purpose of both the programs is
very simple. We want to exchange the position of the names
“raman” and “srinivas”.

* Exchange names using 2-D array of characters */
main()

char names[][10] = {

Chapter 9: Puppetting On Strings 349

"akshay",
Ilparagll,
“raman”,
"srinivas",

"gopal’,
"rajesh”

int i;
char t;
printf ("\nOriginal: %s %s", &names[2][0], &names[3][0]) ;
for (i=0;i<=9;i++)
t = names[2][i] ;
names[2][i] = names[3][i] ;
names[3][ij =t;

}

printf ("\nNew: %s %s", &names[2][0], &names[3][0]) ;
}

And here is the output...

Original: raman srinivas
New: srinivas raman

Note that in this program to exchange the names we are required to
exchange corresponding characters of the two names. In effect, 10
exchanges are needed to interchange two names.

Let us see, if the number of exchanges can be reduced by using an
array of pointers to strings. Here is the program...

main()

char *names[] = {

350 Let Us C

"akshay",

"parag",

“raman”,

"srinivas",

"gopal’,

"rajesh”
}s

char *temp ;
printf ("Original: %s %s", names[2], names[3]) ;

temp = names[2] ;
names[2] = names|[3] ;
names|3] = temp ;

printf ("\nNew: %s %s", names[2], names|[3]) ;

}

And here is the output...

Original: raman srinivas
New: srinivas raman

The output is same as the earlier program. In this program all that
we are required to do is exchange the addresses (of the names)
stored in the array of pointers, rather than the names themselves.
Thus, by effecting just one exchange we are able to interchange
names. This makes handling strings very convenient.

Thus, from the point of view of efficient memory usage and ease
of programming, an array of pointers to strings definitely scores
over a two-dimensional character array. That is why, even though
in principle strings can be stored and handled through a two-
dimensional array of characters, in actual practice it is the array of
pointers to strings, which is more commonly used.

Chapter 9: Puppetting On Strings 351

Limitation of Array of Pointers to Strings

When we are using a two-dimensional array of characters we are
at liberty to either initialize the strings where we are declaring the
array, or receive the strings using scanf() function. However,
when we are using an array of pointers to strings we can initialize
the strings at the place where we are declaring the array, but we
cannot receive the strings from keyboard using scanf(). Thus, the
following program would never work out.

main()

{
char *namesl6] ;
int i;

for(i=0;i<=5;i++)

printf ("\nEnter name ") ;
scanf ("%s", names]i]) ;

}
}

The program doesn’t work because; when we are declaring the
array it is containing garbage values. And it would be definitely
wrong to send these garbage values to scanf() as the addresses
where it should keep the strings received from the keyboard.

Solution

If we are bent upon receiving the strings from keyboard using
scanf(') and then storing their addresses in an array of pointers to
strings we can do it in a slightly round about manner as shown
below.

#include "alloc.h"
main()

352 Let Us C

char *names|6] ;
char n[50] ;

int len, i;

char *p;

for(i=0;i<=5;i++)

{
printf ("\nEnter name ") ;
scanf ("%s", n);
len=strlen(n);
p=malloc(len+1);
strepy (p, n);
namesli] =p ;

}

for(i=0;i<=5;i+t)
printf ("\n%s", names|i]) ;

}

Here we have first received a name using scanf() in a string n[].
Then we have found out its length using strlen() and allocated
space for making a copy of this name. This memory allocation has
been done using a standard library function called malloc(). This
function requires the number of bytes to be allocated and returns
the base address of the chunk of memory that it allocates. The
address returned by this function is always of the type void *.
Hence it has been converted into char * using a feature called
typecasting. Typecasting is discussed in detail in Chapter 15. The
prototype of this function has been declared in the file ‘alloc.h’.
Hence we have #included this file.

But why did we not use array to allocate memory? This is because
with arrays we have to commit to the size of the array at the time
of writing the program. Moreover, there is no way to increase or
decrease the array size during execution of the program. In other
words, when we use arrays static memory allocation takes place.

Chapter 9: Puppetting On Strings 353

Unlike this, using malloc() we can allocate memory dynamically,
during execution. The argument that we pass to malloc() can be a
variable whose value can change during execution.

Once we have allocated the memory using malloc() we have
copied the name received through the keyboard into this allocated
space and finally stored the address of the allocated chunk in the
appropriate element of names[], the array of pointers to strings.

This solution suffers in performance because we need to allocate
memory and then do the copying of string for each name received
through the keyboard.

Summary

(a)
(b)
()

(d)
(€)

(f)

(@)

A string is nothing but an array of characters terminated by
“\0’.

Being an array, all the characters of a string are stored in
contiguous memory locations.

Though scanf() can be used to receive multi-word strings,
gets() can do the same job in a cleaner way.

Both printf() and puts() can handle multi-word strings.
Strings can be operated upon using several standard library
functions like strlen(), strcpy(), strcat() and strcmp()
which can manipulate strings. More importantly we imitated
some of these functions to learn how these standard library
functions are written.

Though in principle a 2-D array can be used to handle several
strings, in practice an array of pointers to strings is preferred
since it takes less space and is efficient in processing strings.
malloc() function can be used to allocate space in memory on
the fly during execution of the program.

Exercise

Simple strings

354 Let Us C

[A] What would be the output of the following programs:
(@ main()

char c[2]="A";
printf ("\n%c", c[0]) ;
printf ("\n%s", ¢) ;

}

(b) main()

{
char s[] ="Get organised! learn C!I!" ;
printf ("\n%s", &s[2]) ;
printf ("\n%s",s) ;
printf ("\n%s", &s) ;
printf ("\n%c", s[2]) ;

}

(c) main()
{
char s[] ="No two viruses work similarly" ;
inti=0;
while (s[i]!=0)
{
printf ("\n%c %c", s[i], *(s +1i)) ;
printf ("\n%c %c", i[s], *(i +s));
i++
}
}

(d) main()
{
char s[]="Churchgate: no church no gate";
char t[25];
char *ss, *t;
SS=S;
while (*ss !1="0")
*SS++ = Ht++

Chapter 9: Puppetting On Strings

355

printf ("\n%s", t) ;

}
(e) main()
{
charstrl[]={'H,'e, T, I, ‘0" };
char str2[] = "Hello" ;
printf ("\n%s", strl) ;
printf ("\n%s", str2) ;
}
(H) main()
{
printf (5 + "Good Morning ") ;
}
) rT{wlilﬂ()
printf ("%c", "abcdefgh'[4]) ;
}
(h) main()
printf ("\n%d%d", sizeof (‘3"), sizeof ("3"), sizeof (3));
}
[B] Point out the errors, if any, in the following programs:
(@) main()
{

char *strl = "United" ;
char *str2 = "Front" ;
char *str3 ;
str3 = strcat (strl, str2) ;
printf ("\n%s", str3) ;

}

(b) main()
{

356 Let Us C

©)

[C]
(a)
(b)

()

(d)

[O]
(@)

(b)

int ar[]={"A",'B",'C",'D' };
int i;
for(i=0;i<=3;i++)
printf ("\n%d", arrfi]) ;
}

main()

char arr[8] = "Rhombus";

int i;

for(i=0;i<=7;i++)
printf ("\n%d", *arr) ;

arr++ ;
}
Fill in the blanks:
"A"isa while A’ is a
A string is terminated by a character, which is written
as
The array char name[10] can consist of a maximum of

characters.

The array elements are always stored in memory
locations.

Attempt the following:

Which is more appropriate for reading in a multi-word string?
gets() printf() scanf() puts()

If the string "Alice in wonder land" is fed to the following
scanf() statement, what will be the contents of the arrays
strl, str2, str3 and str4?

scanf ("%s%s%s%s%s", strl, str2, str3, strd) ;

Chapter 9: Puppetting On Strings 357

()

(d)

(€)

(f)

Write a program that converts all lowercase characters in a
given string to its equivalent uppercase character.

Write a program that extracts part of the given string from the
specified position. For example, if the sting is "Working with
strings is fun”, then if from position 4, 4 characters are to be
extracted then the program should return string as "king".
Moreover, if the position from where the string is to be
extracted is given and the number of characters to be
extracted is O then the program should extract entire string
from the specified position.

Write a program that converts a string like *124" to an integer
124.

Write a program that replaces two or more consecutive blanks
in a string by a single blank. For example, if the input is

Grim return to the planet of apes!!
the output should be

Grim return to the planet of apes!!

Two-dimensional array, Array of pointers to strings

[E] Answer the following:

(@)

How many bytes in memory would be occupied by the
following array of pointers to strings? How many bytes would
be required to store the same strings, if they are stored in a
two-dimensional character array?

char *mess[] = {
"Hammer and tongs",
"Tooth and nail",

358 Let Us C

"Spit and polish",
"You and C"
b

(b) Can an array of pointers to strings be used to collect strings
from the keyboard? If not, why not?

[F] Attempt the following:

(@) Write a program that uses an array of pointers to strings str[].
Receive two strings strl and str2 and check if strl is
embedded in any of the strings in str[]. If strl is found, then
replace it with str2.

char *str[] ={
"We will teach you how to...",
"Move a mountain",
"Level a building",
"Erase the past",
"Make a million",
"...all through C!"

}

For example if strl contains "mountain” and str2 contains
"car", then the second string in str should get changed to
"Move a car".

(b) Write a program to sort a set of names stored in an array in
alphabetical order.

(c) Write a program to reverse the strings stored in the following
array of pointers to strings:

char *s[]= {
"To erris human...",
"But to really mess things up...",
"One needs to know C!!"

}s

Chapter 9: Puppetting On Strings

359

Hint: Write a function xstrrev (string) which should reverse
the contents of one string. Call this function for reversing each

string stored in s.

(d) Develop a program that receives the month and year from the
keyboard as integers and prints the calendar in the following

format.

Mon Tue Wed Thu
1 2

6 7 8 9

13 14 15 16

20 21 22 23

27 28 29 30

September 2004

Fri
3

10
17
24

Sat

11
18
25

Sun

12
19
26

Note that according to the Gregorian calendar 01/01/1900 was
Monday. With this as the base the calendar should be

generated.

(e) Modify the above program suitably so that once the calendar
for a particular month and year has been displayed on the

360 Let Us C

(f)

(@)

(h)

screen, then using arrow keys the user must be able to change
the calendar in the following manner:

Up arrow key : Next year, same month
Down arrow key : Previous year, same month
Right arrow key : Same year, next month
Left arrow key : Same year, previous month

If the escape key is hit then the procedure should stop.

Hint: Use the getkey() function discussed in Chapter 8,
problem number [L](c).

A factory has 3 division and stocks 4 categories of products.
An inventory table is updated for each division and for each
product as they are received. There are three independent
suppliers of products to the factory:

(@) Design a data format to represent each transaction.

(b) Write a program to take a transaction and update the
inventory.

(c) If the cost per item is also given write a program to
calculate the total inventory values.

A dequeue is an ordered set of elements in which elements
may be inserted or retrieved from either end. Using an array
simulate a dequeue of characters and the operations retrieve
left, retrieve right, insert left, insert right. Exceptional
conditions such as dequeue full or empty should be indicated.
Two pointers (namely, left and right) are needed in this
simulation.

Write a program to delete all vowels from a sentence. Assume
that the sentence is not more than 80 characters long.

Write a program that will read a line and delete from it all
occurrences of the word “the’.

Chapter 9: Puppetting On Strings 361

(1) Write a program that takes a set of names of individuals and
abbreviates the first, middle and other names except the last
name by their first letter.

(k) Write a program to count the number of occurrences of any
two vowels in succession in a line of text. For example, in the
sentence

“Pleases read this application and give me gratuity”

such occurrences are ea, €ea, Ui.

10 structures

e Why Use Structures
Declaring a Structure
Accessing Structure Elements
How Structure Elements are Stored
Array of Structures
Additional Features of Structures
Uses of Structures
Summary
Exercise

363

364 Let Us C

hich mechanic is good enough who knows how to repair

only one type of vehicle? None. Same thing is true about

C language. It wouldn’t have been so popular had it been
able to handle only all ints, or all floats or all chars at a time. In
fact when we handle real world data, we don’t usually deal with
little atoms of information by themselves—things like integers,
characters and such. Instead we deal with entities that are
collections of things, each thing having its own attributes, just as
the entity we call a ‘book’ is a collection of things such as title,
author, call number, publisher, number of pages, date of
publication, etc. As you can see all this data is dissimilar, for
example author is a string, whereas number of pages is an integer.
For dealing with such collections, C provides a data type called
‘structure’. A structure gathers together, different atoms of
information that comprise a given entity. And structure is the topic
of this chapter.

Why Use Structures

We have seen earlier how ordinary variables can hold one piece of
information and how arrays can hold a number of pieces of
information of the same data type. These two data types can
handle a great variety of situations. But quite often we deal with
entities that are collection of dissimilar data types.

For example, suppose you want to store data about a book. You
might want to store its name (a string), its price (a float) and
number of pages in it (an int). If data about say 3 such books is to
be stored, then we can follow two approaches:

(@) Construct individual arrays, one for storing names, another for
storing prices and still another for storing number of pages.

(b) Use a structure variable.

Let us examine these two approaches one by one. For the sake of
programming convenience assume that the names of books would

Chapter 10: Structures 365

be single character long. Let us begin with a program that uses
arrays.

main()

{
char name[3];
float price[3];
int pages[3],i;

printf ("\nEnter names, prices and no. of pages of 3 books\n") ;

for(i=0;i<=2;i++)
scanf ("%c %f %d", &name][i], &priceli], &pages|i]);

printf ("\nAnd this is what you entered\n") ;
for(i=0;i<=2;i++)
printf ("%c %f %d\n", nameli], priceli], pages|i]);
}

And here is the sample run...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 233.70 512

And this is what you entered
A 100.000000 354
C 256.500000 682
F 233.700000 512

This approach no doubt allows you to store names, prices and
number of pages. But as you must have realized, it is an unwieldy
approach that obscures the fact that you are dealing with a group
of characteristics related to a single entity—the book.

366 Let Us C

The program becomes more difficult to handle as the number of
items relating to the book go on increasing. For example, we
would be required to use a number of arrays, if we also decide to
store name of the publisher, date of purchase of book, etc. To solve
this problem, C provides a special data type—the structure.

A structure contains a number of data types grouped together.
These data types may or may not be of the same type. The
following example illustrates the use of this data type.

main()
{
struct book
{
char name ;
float price ;
int pages ;
}s

struct book b1, b2, b3 ;

printf ("\nEnter names, prices & no. of pages of 3 books\n") ;
scanf ("%c %f %d", &bl.name, &bl.price, &bl.pages) ;
scanf ("%c %f %d", &b2.name, &b2.price, &b2.pages) ;
scanf ("%c %f %d", &b3.name, &b3.price, &b3.pages) ;

printf ("\nAnd this is what you entered") ;

printf ("\n%c %f %d", b1l.name, bl.price, bl.pages);
printf ("\n%c %f %d", b2.name, b2.price, b2.pages) ;
printf ("\n%c %f %d", b3.name, b3.price, b3.pages) ;

}

And here is the output...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 233.70 512

Chapter 10: Structures 367

And this is what you entered

A 100.000000 354

C 256.500000 682

F 233.700000 512

This program demonstrates two fundamental aspects of structures:

(@) declaration of a structure
(b) accessing of structure elements

Let us now look at these concepts one by one.

Declaring a Structure

In our example program, the following statement declares the
structure type:

struct book

{
char name ;
float price ;
int pages ;
};

This statement defines a new data type called struct book. Each
variable of this data type will consist of a character variable called
name, a float variable called price and an integer variable called
pages. The general form of a structure declaration statement is
given below:

struct <structure name>
structure element 1 ;
structure element 2 ;
structure element 3 ;

368 Let Us C

}s

Once the new structure data type has been defined one or more
variables can be declared to be of that type. For example the
variables b1, b2, b3 can be declared to be of the type struct book,
as,

struct book b1, b2, b3 ;

This statement sets aside space in memory. It makes available
space to hold all the elements in the structure—in this case, 7
bytes—one for name, four for price and two for pages. These
bytes are always in adjacent memory locations.

If we so desire, we can combine the declaration of the structure
type and the structure variables in one statement.

For example,

struct book

{
char name ;
float price ;
int pages ;
};

struct book b1, b2, b3 ;
is same as...

struct book

{
char name ;
float price ;
int pages;

}bl, b2, b3;

or even...

struct

Chapter 10: Structures 369

{
char name ;
float price ;
int pages ;
}bl, b2, b3;

Like primary variables and arrays, structure variables can also be
initialized where they are declared. The format used is quite
similar to that used to initiate arrays.

struct book

{
char name[10] ;
float price ;
int pages ;

b

struct book bl ={"Basic", 130.00, 550 } ;
struct book b2 ={"Physics", 150.80, 800 } ;

Note the following points while declaring a structure type:

(@) The closing brace in the structure type declaration must be
followed by a semicolon.

(b) It is important to understand that a structure type declaration
does not tell the compiler to reserve any space in memory. All
a structure declaration does is, it defines the ‘form’ of the
structure.

(c) Usually structure type declaration appears at the top of the
source code file, before any variables or functions are defined.
In very large programs they are usually put in a separate
header file, and the file is included (using the preprocessor
directive #include) in whichever program we want to use this
structure type.

370 Let Us C

Accessing Structure Elements

Having declared the structure type and the structure variables, let
us see how the elements of the structure can be accessed.

In arrays we can access individual elements of an array using a
subscript. Structures use a different scheme. They use a dot (.)
operator. So to refer to pages of the structure defined in our
sample program we have to use,

bl.pages

Similarly, to refer to price we would use,

b1.price

Note that before the dot there must always be a structure variable
and after the dot there must always be a structure element.

How Structure Elements are Stored

Whatever be the elements of a structure, they are always stored in
contiguous memory locations. The following program would
illustrate this:

¥ Memory map of structure elements */

main()
{
struct book
{
char name ;
float price ;
int pages ;
};

struct book bl ={"B', 130.00, 550 } ;

printf ("\nAddress of name = %u", &bl.name);

Chapter 10: Structures 371

printf ("\nAddress of price = %u", &bl.price) ;
printf ("\nAddress of pages = %u", &bl.pages) ;

}

Here is the output of the program...

Address of name = 65518
Address of price = 65519
Address of pages = 65523

Actually the structure elements are stored in memory as shown in
the Figure 10.1.

bl.name bl.price bl.pages
‘B’ 130.00 550
65518 65519 65523
Figure 10.1

Array of Structures

Our sample program showing usage of structure is rather simple
minded. All it does is, it receives values into various structure
elements and output these values. But that’s all we intended to do
anyway... show how structure types are created, how structure
variables are declared and how individual elements of a structure
variable are referenced.

In our sample program, to store data of 100 books we would be
required to use 100 different structure variables from b1l to b100,
which is definitely not very convenient. A better approach would
be to use an array of structures. Following program shows how to
use an array of structures.

372 Let Us C

* Usage of an array of structures */

main()
{
struct book
{
char name ;
float price ;
int pages ;
}s
struct book b[100] ;
int i;

for (i=0;i<=99;i++)
{

printf ("\nEnter name, price and pages ") ;
scanf ("%c %f %d", &b[i].name, &b[i].price, &b[i].pages) ;
}

for(i=0;i<=99;i++)
printf ("\n%c %f %d", b[i].name, bli].price, b[i].pages) ;
}

linkfloat()

{
floata=0,*b;
b =&a; /* cause emulator to be linked */
a=*b; [*suppress the warning - variable not used */

}

Now a few comments about the program:

(@) Notice how the array of structures is declared...
struct book b[100] ;

Chapter 10: Structures 373

(b)

(©)

(d)

(€)

This provides space in memory for 100 structures of the type
struct book.

The syntax we use to reference each element of the array b is
similar to the syntax used for arrays of ints and chars. For
example, we refer to zeroth book’s price as b[0].price.
Similarly, we refer first book’s pages as b[1].pages.

It should be appreciated what careful thought Dennis Ritchie
has put into C language. He first defined array as a collection
of similar elements; then realized that dissimilar data types
that are often found in real life cannot be handled using
arrays, therefore created a new data type called structure. But
even using structures programming convenience could not be
achieved, because a lot of variables (b1 to b100 for storing
data about hundred books) needed to be handled. Therefore he
allowed us to create an array of structures; an array of similar
data types which themselves are a collection of dissimilar data
types. Hats off to the genius!

In an array of structures all elements of the array are stored in
adjacent memory locations. Since each element of this array is
a structure, and since all structure elements are always stored
in adjacent locations you can very well visualise the
arrangement of array of structures in memory. In our example,
b[0]’s name, price and pages in memory would be
immediately followed by b[1]’s name, price and pages, and
S0 on.

What is the function linkfloat() doing here? If you don’t
define it you are bound to get the error "Floating Point
Formats Not Linked" with majority of C Compilers. What
causes this error to occur? When parsing our source file, if the
compiler encounters a reference to the address of a float, it
sets a flag to have the linker link in the floating-point
emulator. A floating point emulator is used to manipulate
floating point numbers in runtime library functions like

374 Let UsC

scanf() and atof(). There are some cases in which the
reference to the float is a bit obscure and the compiler does
not detect the need for the emulator. The most common is
using scanf() to read a float in an array of structures as
shown in our program.

How can we force the formats to be linked? That’s where the
linkfloat() function comes in. It forces linking of the
floating-point emulator into an application. There is no need
to call this function, just define it anywhere in your program.

Additional Features of Structures

Let us now explore the intricacies of structures with a view of
programming convenience. We would highlight these intricacies
with suitable examples:

(@) The values of a structure variable can be assigned to another
structure variable of the same type using the assignment
operator. It is not necessary to copy the structure elements
piece-meal. Obviously, programmers prefer assignment to
piece-meal copying. This is shown in the following example.

main()
{
struct employee
{
char name[10] ;
int age;
float salary ;
b
struct employee el ={"Sanjay", 30, 5500.50 } ;
struct employee €2, e3;

I* piece-meal copying */
strcpy (e2.name, el.name) ;
e2.age =el.age;

Chapter 10: Structures 375

(b)

e2.salary = el.salary ;

[* copying all elements at one go */
e3=e2;

printf ("\n%s %d %f", el.name, el.age, el.salary) ;
printf ("\n%s %d %f", e2.name, e2.age, e2.salary) ;
printf ("\n%s %d %f", e3.name, e3.age, e3.salary) ;

The output of the program would be...

Sanjay 30 5500.500000
Sanjay 30 5500.500000
Sanjay 30 5500.500000

Ability to copy the contents of all structure elements of one
variable into the corresponding elements of another structure
variable is rather surprising, since C does not allow assigning
the contents of one array to another just by equating the two.
As we saw earlier, for copying arrays we have to copy the
contents of the array element by element.

This copying of all structure elements at one go has been
possible only because the structure elements are stored in
contiguous memory locations. Had this not been so, we would
have been required to copy structure variables element by
element. And who knows, had this been so, structures would
not have become popular at all.

One structure can be nested within another structure. Using
this facility complex data types can be created. The following
program shows nested structures at work.

main()

{

struct address

376 Let Us C

{
char phone[15] ;
char city[25] ;
int pin;
b
struct emp
char name[25] ;
struct address a ;
b

struct emp e ={"jeru", "531046", "nagpur", 10 };

printf ("\nname = %s phone = %s", e.name, e.a.phone) ;
printf ("\ncity = %s pin = %d", e.a.city, e.a.pin) ;
}

And here is the output...

name = jeru phone = 531046
city = nagpur pin = 10

Notice the method used to access the element of a structure
that is part of another structure. For this the dot operator is
used twice, as in the expression,

e.a.pin or e.a.city

Of course, the nesting process need not stop at this level. We
can nest a structure within a structure, within another
structure, which is in still another structure and so on... till the
time we can comprehend the structure ourselves. Such
construction however gives rise to variable names that can be
surprisingly self descriptive, for example:

maruti.engine.bolt.large.qty

Chapter 10: Structures 377

(©)

This clearly signifies that we are referring to the quantity of
large sized bolts that fit on an engine of a maruti car.

Like an ordinary variable, a structure variable can also be
passed to a function. We may either pass individual structure
elements or the entire structure variable at one go. Let us
examine both the approaches one by one using suitable
programs.

[* Passing individual structure elements */
main()

{

struct book

{

char name[25] ;
char author[25] ;
int callno ;

};
struct book b1 ={"Let us C", "YPK", 101} ;

display (b1l.name, bl.author, bl.callno) ;
}

display (char *s, char *,int n)

{
}

And here is the output...

printf ("\n%s %s %d", s, t,n);

Letus C YPK 101

Observe that in the declaration of the structure, name and
author have been declared as arrays. Therefore, when we call
the function display() using,

display (b1l.name, bl.author, bl.callno) ;

378 Let Us C

we are passing the base addresses of the arrays name and
author, but the value stored in callno. Thus, this is a mixed
call—a call by reference as well as a call by value.

It can be immediately realized that to pass individual elements
would become more tedious as the number of structure
elements go on increasing. A better way would be to pass the
entire structure variable at a time. This method is shown in the
following program.

struct book

{

char name[25] ;
char author[25] ;
int callno ;

b

main()
struct book bl={"Letus C","YPK", 101};
display (bl1);

display (struct book b)

{

}

And here is the output...

printf ("\n%s %s %d", b.name, b.author, b.callno) ;

Let us C YPK 101

Note that here the calling of function display() becomes quite
compact,

display (bl1);

Chapter 10: Structures 379

(d)

Having collected what is being passed to the display()
function, the question comes, how do we define the formal
arguments in the function. We cannot say,

struct book b1 ;

because the data type struct book is not known to the
function display(). Therefore, it becomes necessary to define
the structure type struct book outside main(), so that it
becomes known to all functions in the program.

The way we can have a pointer pointing to an int, or a pointer
pointing to a char, similarly we can have a pointer pointing to
a struct. Such pointers are known as ‘structure pointers’.

Let us look at a program that demonstrates the usage of a
structure pointer.

main()
{

struct book

{

char name[25] ;

char author[25] ;

int callno ;
};
struct book bl={"Letus C","YPK", 101};
struct book *ptr ;

ptr=&bl;
printf ("\n%s %s %d", bl.name, bl.author, bl.callno) ;
printf ("\n%s %s %d", ptr->name, ptr->author, ptr->callno) ;

}

The first printf() is as usual. The second printf() however is
peculiar. We can’t use ptr.name or ptr.callno because ptr is
not a structure variable but a pointer to a structure, and the dot

380 Let Us C

operator requires a structure variable on its left. In such cases
C provides an operator ->, called an arrow operator to refer to
the structure elements. Remember that on the left hand side of
the *.” structure operator, there must always be a structure
variable, whereas on the left hand side of the “->’ operator
there must always be a pointer to a structure. The arrangement
of the structure variable and pointer to structure in memory is
shown in the Figure 10.2.

bl.name b1.author b1l.callno
LetUs C YPK 101
65472 65497 65522
ptr
65472
65524
Figure 10.2

Can we not pass the address of a structure variable to a
function? We can. The following program demonstrates this.

[* Passing address of a structure variable */
struct book

{

char name[25] ;
char author[25] ;
int callno ;

b
main()

struct book bl={"Letus C","YPK", 101};
display (&b1);

Chapter 10: Structures 381

(€)

}
display (struct book *b)

printf ("\n%s %s %d", b->name, b->author, b->callno) ;

}

And here is the output...
Letus C YPK 101

Again note that to access the structure elements using pointer
to a structure we have to use the ‘->’ operator.

Also, the structure struct book should be declared outside
main() such that this data type is available to display() while
declaring pointer to the structure.

Consider the following code snippet:

struct emp

-
inta;
char ch;
float s ;
b
structemp e ;
printf ("%u %u %u", &e.a, &e.ch, &e.s);

If we execute this program using TC/TC++ compiler we get
the addresses as:

65518 65520 65521

As expected, in memory the char begins immediately after
the int and float begins immediately after the char.

382 Let Us C

However, if we run the same program using VC++ compiler
then the output turns out to be:

1245044 1245048 1245052

It can be observed from this output that the float doesn’t get
stored immediately after the char. In fact there is a hole of
three bytes after the char. Let us understand the reason for
this. VC++ is a 32-bit compiler targeted to generate code for a
32-bit microprocessor. The architecture of this microprocessor
is such that it is able to fetch the data that is present at an
address, which is a multiple of four much faster than the data
present at any other address. Hence the VC++ compiler aligns
every element of a structure at an address that is multiple of
four. That’s the reason why there were three holes created
between the char and the float.

However, some programs need to exercise precise control
over the memory areas where data is placed. For example,
suppose we wish to read the contents of the boot sector (first
sector on the floppy/hard disk) into a structure. For this the
byte arrangement of the structure elements must match the
arrangement of various fields in the boot sector of the disk.
The #pragma pack directive offers a way to fulfill this
requirement. This directive specifies packing alignment for
structure members. The pragma takes effect at the first
structure declaration after the pragma is seen. Turbo C/C++
compiler doesn’t support this feature, VC++ compiler does.
The following code shows how to use this directive.

#pragma pack(1)

struct emp

-
inta;
charch;
float s ;

}s

Chapter 10: Structures 383

#pragma pack()

structemp e ;
printf ("%u %u %u", &e.a, &e.ch, &e.s);

Here, #pragma pack (1) lets each structure element to begin
on a 1-byte boundary as justified by the output of the program
given below:

1245044 1245048 1245049

Uses of Structures

Where are structures useful? The immediate application that
comes to the mind is Database Management. That is, to maintain
data about employees in an organization, books in a library, items
in a store, financial accounting transactions in a company etc. But
mind you, use of structures stretches much beyond database
management. They can be used for a variety of purposes like:

(a)
(b)
(©)
(d)
(e)
()
()
(h)
(i)
()
(k)
0

Changing the size of the cursor

Clearing the contents of the screen

Placing the cursor at an appropriate position on screen
Drawing any graphics shape on the screen

Receiving a key from the keyboard

Checking the memory size of the computer

Finding out the list of equipment attached to the computer
Formatting a floppy

Hiding a file from the directory

Displaying the directory of a disk

Sending the output to printer

Interacting with the mouse

And that is certainly a very impressive list! At least impressive
enough to make you realize how important a data type a structure
is and to be thorough with it if you intend to program any of the

384 Let Us C

above applications. Some of these applications would be discussed
in Chapters 16 to 19.

Summary

(a)
(b)
()
(d)
(€)
(f)

A structure is usually used when we wish to store dissimilar
data together.

Structure elements can be accessed through a structure
variable using a dot (.) operator.

Structure elements can be accessed through a pointer to a
structure using the arrow (->) operator.

All elements of one structure variable can be assigned to
another structure variable using the assignment (=) operator.

It is possible to pass a structure variable to a function either
by value or by address.

It is possible to create an array of structures.

Exercise

[A] What would be the output of the following programs:

@)

main()

struct gospel
t
int num ;
char mess1[50] ;
char mess2[50] ;
ym;

m.num=1;
strepy (m.messl, "If all that you have is hammer") ;
strcpy (m.mess2, "Everything looks like a nail") ;

[* assume that the strucure is located at address 1004 */
printf ("\n%u %u %u", &m.num, m.mess1, m.mess?2) ;

Chapter 10: Structures 385

(b)

struct gospel

{

int num ;
char mess1[50] ;
char mess2[50] ;

yml= {2, "If you are driven by success",

"make sure that it is a quality drive"

¥

main()

{

}

struct gospel m2, m3 ;

m2=ml;

m3=m2;

printf ("\n%d %s %s", m1.num, m2.mess1, m3.mess2) ;

[B] Point out the errors, if any, in the following programs:

@)

(b)

main()

{

}

struct employee

char name[25] ;
int age;
float bs;
b
struct employee e;
strcpy (e.name, "Hacker") ;
age=25;
printf ("\n%s %d", e.name, age) ;

main()

{

struct

char name[25] ;

386

Let UsC

char language[10] ;
b
struct employee e ={"Hacker","C"};
printf ("\n%s %d", e.name, e.language) ;

}

struct virus

{

char signature[25] ;
char status[20] ;

int size ;
V2] ={
"Yankee Doodle", "Deadly", 1813,
"Dark Avenger", "Killer", 1795
b
main()
Lo
int i;

for (i=0;i<=1;i++)
printf ("\n%s %s", v.signature, v.status) ;
}

struct s

{
char ch;
int i;
float a;

b

main()

{
structs var ={'C', 100, 12.55};
f(var);
g(&var);

}
f(structs v)
{

printf ("\n%c %d %f", v ->ch,v->i,v->a);

}

Chapter 10: Structures 387

g (structs *v)

printf ("\n%c %d %f", v.ch, v.i,v.a);

}
(e) structs

Lo
inti;
structs *p;

}s

main()

{
struct s varl, var2 ;
varl.i=100;
var2.i=200 ;
varl.p = &var2 ;
var2.p = &varl ;
printf ("\n%d %d", varl.p -> i, var2.p->i);

}

[C] Answer the following:

(@) Ten floats are to be stored in memory. What would you
prefer, an array or a structure?

(b) Given the statement,
maruti.engine.bolts = 25 ;
which of the following is True?

1. structure bolts is nested within structure engine
2. structure engine is nested within structure maruti
3. structure maruti is nested within structure engine
4. structure maruti is nested within structure bolts

(c) State True or False:

1. All structure elements are stored in contiguous memory
locations.

388 Let Us C

(d)

[O]
(a)

2. An array should be used to store dissimilar elements, and
a structure to store similar elements.

3. In an array of structures, not only are all structures stored
in contiguous memory locations, but the elements of
individual structures are also stored in contiguous

locations.
struct time
.
int hours ;
int minutes ;
int seconds ;
Ht;
struct time *tt ;
tt=&t:

Looking at the above declarations, which of the following
refers to seconds correctly:

1. tt.seconds

2. (*tt).seconds
3. time.t

4. tt->seconds

Attempt the following:

Create a structure to specify data on students given below:
Roll number, Name, Department, Course, Year of joining
Assume that there are not more than 450 students in the
collage.

(@) Write a function to print names of all students who joined
in a particular year.

(b) Write a function to print the data of a student whose roll
number is given.

Chapter 10: Structures 389

(b)

(©)

(d)

(e)

(f)

Create a structure to specify data of customers in a bank. The

data to be stored is: Account number, Name, Balance in

account. Assume maximum of 200 customers in the bank.

(@) Write a function to print the Account number and name
of each customer with balance below Rs. 100.

(b) If a customer request for withdrawal or deposit, it is
given in the form:

Acct. no, amount, code (1 for deposit, O for withdrawal)

Write a program to give a message, “The balance is
insufficient for the specified withdrawal”.

An automobile company has serial number for engine parts

starting from AAO to FF9. The other characteristics of parts to

be specified in a structure are: Year of manufacture, material

and quantity manufactured.

(@) Specify a structure to store information corresponding to
a part.

(b) Write a program to retrieve information on parts with
serial numbers between BB1 and CC6.

A record contains name of cricketer, his age, number of test
matches that he has played and the average runs that he has
scored in each test match. Create an array of structure to hold
records of 20 such cricketer and then write a program to read
these records and arrange them in ascending order by average
runs. Use the qusort() standard library function.

There is a structure called employee that holds information
like employee code, name, date of joining. Write a program to
create an array of the structure and enter some data into it.
Then ask the user to enter current date. Display the names of
those employees whose tenure is 3 or more than 3 years
according to the given current date.

Write a menu driven program that depicts the working of a
library. The menu options should be:

390 Let Us C

(@)

(h)

(i)

Add book information

Display book information

List all books of given author

List the title of specified book

List the count of books in the library

List the books in the order of accession number
Exit

Create a structure called library to hold accession number,
title of the book, author name, price of the book, and flag
indicating whether book is issued or not.

NookrwdpE

Write a program that compares two given dates. To store date
use structure say date that contains three members namely
date, month and year. If the dates are equal then display
message as "Equal™ otherwise "Unequal™.

Linked list is a very common data structure often used to store
similar data in memory. While the elements of an array
occupy contiguous memory locations, those of a linked list
are not constrained to be stored in adjacent location. The
individual elements are stored “somewhere” in memory,
rather like a family dispersed, but still bound together. The
order of the elements is maintained by explicit links between
them. Thus, a linked list is a collection of elements called
nodes, each of which stores two item of information—an
element of the list, and a link, i.e., a pointer or an address that
indicates explicitly the location of the node containing the
successor of this list element.

Write a program to build a linked list by adding new nodes at
the beginning, at the end or in the middle of the linked list.
Also write a function display() which display all the nodes
present in the linked list.

A stack is a data structure in which addition of new element
or deletion of existing element always takes place at the same

Chapter 10: Structures 391

)

end. This end is often known as ‘top’ of stack. This situation
can be compared to a stack of plates in a cafeteria where every
new plate taken off the stack is also from the ‘top’ of the
stack. There are several application where stack can be put to
use. For example, recursion, keeping track of function calls,
evaluation of expressions, etc. Write a program to implement
a stack using a linked list.

Unlike a stack, in a queue the addition of new element takes
place at the end (called ‘rear’ of queue) whereas deletion takes
place at the other end (called ‘front’ of queue). Write a
program to implement a queue using a linked list.

392 Let Us C

11 console
Input/Output

e Types of I/0

e Console I/O Functions
Formatted Console 1/O Functions
sprintf() and sscanf() Functions
Unformatted Console 1/0 Functions

e Summary

e Exercise

393

394 Let Us C

s mentioned in the first chapter, Dennis Ritchie wanted C

to remain compact. In keeping with this intention he

deliberately omitted everything related with Input/Output
(I/0) from his definition of the language. Thus, C simply has no
provision for receiving data from any of the input devices (like say
keyboard, disk, etc.), or for sending data to the output devices (like
say VDU, disk, etc.). Then how do we manage /O, and how is it
that we were we able to use printf() and scanf() if C has nothing
to offer for 1/0? This is what we intend to explore in this chapter.

Types of 1/O

Though C has no provision for 1/0, it of course has to be dealt with
at some point or the other. There is not much use writing a
program that spends all its time telling itself a secret. Each
Operating System has its own facility for inputting and outputting
data from and to the files and devices. It’s a simple matter for a
system programmer to write a few small programs that would link
the C compiler for particular Operating system’s 1/O facilities.

The developers of C Compilers do just that. They write several
standard 1/0 functions and put them in libraries. These libraries are
available with all C compilers. Whichever C compiler you are
using it’s almost certain that you have access to a library of 1/0
functions.

Do understand that the 1/0 facilities with different operating
systems would be different. Thus, the way one OS displays output
on screen may be different than the way another OS does it. For
example, the standard library function printf() for DOS-based C
compiler has been written keeping in mind the way DOS outputs
characters to screen. Similarly, the printf() function for a Unix-
based compiler has been written keeping in mind the way Unix
outputs characters to screen. We as programmers do not have to
bother about which printf() has been written in what manner. We
should just use printf() and it would take care of the rest of the

Chapter 11: Console Input/Output 395

details that are OS dependent. Same is true about all other standard
library functions available for 1/0.

There are numerous library functions available for 1/0. These can
be classified into three broad categories:

(@ Console I/O functions - Functions to receive input
from keyboard and write
output to VDU.

(b) File 1/0 functions - Functions to perform 1/O
operations on a floppy disk or
hard disk.

In this chapter we would be discussing only Console 1/0O functions.
File I/O functions would be discussed in Chapter 12.

Console I/0 Functions

The screen and keyboard together are called a console. Console
I/0 functions can be further classified into two categories—
formatted and unformatted console I/O functions. The basic
difference between them is that the formatted functions allow the
input read from the keyboard or the output displayed on the VDU
to be formatted as per our requirements. For example, if values of
average marks and percentage marks are to be displayed on the
screen, then the details like where this output would appear on the
screen, how many spaces would be present between the two
values, the number of places after the decimal points, etc. can be
controlled using formatted functions. The functions available
under each of these two categories are shown in Figure 11.1. Now
let us discuss these console 1/0 functions in detail.

396

Let UsC

Console Input/Output functions

A

Formatted functions Unformatted functions

Type | Input Output Type | Input Output

char | scanf() | printf() char | getch() putch()
getche() | putchar()
getchar()

int scanf() | printf() int - -

float | scanf() | printf() float - -

string | scanf() | printf() string | gets() puts()

Figure 11.1

Formatted Console 1/0O Functions

As can be seen from Figure 11.1 the functions printf(), and
scanf() fall under the category of formatted console 1/0 functions.
These functions allow us to supply the input in a fixed format and
let us obtain the output in the specified form. Let us discuss these
functions one by one.

We have talked a lot about printf(), used it regularly, but without
having introduced it formally. Well, better late than never. Its

general form looks like this...

printf ("format string", list of variables) ;

The format string can contain:

(@) Characters that are simply printed as they are
(b) Conversion specifications that begin with a % sign

Chapter 11: Console Input/Output 397

(c) Escape sequences that begin with a \ sign
For example, look at the following program:

main()
{
int avg =346 ;
float per=69.2;
printf ("Average = %d\nPercentage = %f", avg, per) ;

}

The output of the program would be...

Average = 346
Percentage = 69.200000

How does printf() function interpret the contents of the format
string. For this it examines the format string from left to right. So
long as it doesn’t come across either a % or a \ it continues to
dump the characters that it encounters, on to the screen. In this
example Average = is dumped on the screen. The moment it
comes across a conversion specification in the format string it
picks up the first variable in the list of variables and prints its value
in the specified format. In this example, the moment %d is met the
variable avg is picked up and its value is printed. Similarly, when
an escape sequence is met it takes the appropriate action. In this
example, the moment \n is met it places the cursor at the beginning
of the next line. This process continues till the end of format string
iS not reached.

Format Specifications

The %d and %f used in the printf() are called format specifiers.
They tell printf() to print the value of avg as a decimal integer
and the value of per as a float. Following is the list of format
specifiers that can be used with the printf() function.

398 Let Us C

Data type Format specifier
Integer short signed %d or %I
short unsigned %u
long singed %Id
long unsigned %lu
unsigned hexadecimal | %x
unsigned octal %0
Real float %f
double %lf
Character signed character %c
unsigned character %c
String %s

Figure 11.2

We can provide following optional specifiers in the format
specifications.

Specifier | Description

dd Digits specifying field width

Decimal point separating field width from precision
(precision stands for the number of places after the
decimal point)

dd Digits specifying precision

- Minus sign for left justifying the output in the
specified field width

Figure 11.3

Chapter 11: Console Input/Output 399

Now a short explanation about these optional format specifiers.
The field-width specifier tells printf() how many columns on
screen should be used while printing a value. For example, %10d
says, “print the variable as a decimal integer in a field of 10
columns”. If the value to be printed happens not to fill up the
entire field, the value is right justified and is padded with blanks
on the left. If we include the minus sign in format specifier (as in
%-10d), this means left justification is desired and the value will
be padded with blanks on the right. Here is an example that should
make this point clear.

main()

{
int weight =63 ;
printf ("\nweight is %d kg", weight) ;
printf ("\nweight is %2d kg", weight) ;
printf ("\nweight is %4d kg", weight) ;
printf ("\nweight is %6d kg", weight) ;
printf ("\nweight is %-6d kg", weight) ;

}

The output of the program would look like this ...

Columns 0123456789012345678901234567890
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg

Specifying the field width can be useful in creating tables of
numeric values, as the following program demonstrates.

main()

{
printf ("\n%f %f %", 5.0, 13.5, 133.9) ;

400 Let Us C

printf ("\n%f %f %f", 305.0, 1200.9, 3005.3) ;
}

And here is the output...

5.000000 13.500000 133.900000
305.000000 1200.900000 3005.300000

Even though the numbers have been printed, the numbers have not
been lined up properly and hence are hard to read. A better way
would be something like this...

main()

{
printf ("\n%210.1f %10.1f %10.1f", 5.0, 13.5, 133.9) ;
printf ("\n%20.1f %10.1f %10.1f", 305.0, 1200.9, 3005.3);

}

This results into a much better output...

01234567890123456789012345678901
5.0 135 133.9
305.0 1200.9 3005.3

The format specifiers could be used even while displaying a string
of characters. The following program would clarify this point:

[* Formatting strings with printf() */
main()
{
char firstnamel|] ="Sandy" ;
char surnamel[] = "Malya";
char firstname2[] = "AjayKumar" ;
char surname2[] = "Gurubaxani";

printf ("\n%20s%20s", firstnamel, surnamel) ;
printf ("\n%20s%20s", firsthame2, surname2) ;

Chapter 11: Console Input/Output 401

}

And here’s the output...

012345678901234567890123456789012345678901234567890
Sandy Malya
AjayKumar Gurubaxani

The format specifier %20s reserves 20 columns for printing a
string and then prints the string in these 20 columns with right
justification. This helps lining up names of different lengths
properly. Obviously, the format %-20s would have left justified
the string.

Escape Sequences

We saw earlier how the newline character, \n, when inserted in a
printf()’s format string, takes the cursor to the beginning of the
next line. The newline character is an ‘escape sequence’, so called
because the backslash symbol (\) is considered as an ‘escape’
character—it causes an escape from the normal interpretation of a
string, so that the next character is recognized as one having a
special meaning.

The following example shows usage of \n and a new escape
sequence \t, called ‘tab’. A \t moves the cursor to the next tab stop.
A 80-column screen usually has 10 tab stops. In other words, the
screen is divided into 10 zones of 8 columns each. Printing a tab
takes the cursor to the beginning of next printing zone. For
example, if cursor is positioned in column 5, then printing a tab
takes it to column 8.

main()

printf ("You\tmust\tbe\tcrazy\nto\thate\tthis\tbook™") ;

402 Let Us C

And here’s the output...

1 2 3 4
01234567890123456789012345678901234567890
You must be crazy
to hate this book

The \n character causes a new line to begin following ‘crazy’. The
tab and newline are probably the most commonly used escape
sequences, but there are others as well. Figure 11.4 shows a
complete list of these escape sequences.

Esc. Seq. | Purpose Esc. Seq. Purpose
\n New line \t Tab
\b Backspace \r Carriage return
\f Form feed \a Alert
\ Single quote \” Double quote
\ Backslash

Figure 11.4

The first few of these escape sequences are more or less self-
explanatory. \b moves the cursor one position to the left of its
current position. \r takes the cursor to the beginning of the line in
which it is currently placed. \a alerts the user by sounding the
speaker inside the computer. Form feed advances the computer
stationery attached to the printer to the top of the next page.
Characters that are ordinarily used as delimiters... the single quote,
double quote, and the backslash can be printed by preceding them
with the backslash. Thus, the statement,

printf ("He said, \"Let's do it\"™") ;

Chapter 11: Console Input/Output 403

will print...
He said, "Let's do it!"

So far we have been describing printf()’s specification as if we
are forced to use only %d for an integer, only %c for a char, only
%s for a string and so on. This is not true at all. In fact, printf()
uses the specification that we mention and attempts to perform the
specified conversion, and does its best to produce a proper result.
Sometimes the result is nonsensical, as in case when we ask it to
print a string using %d. Sometimes the result is useful, as in the
case we ask printf() to print ASCII value of a character using
%d. Sometimes the result is disastrous and the entire program
blows up.

The following program shows a few of these conversions, some
sensible, some weird.

main()

{
char ch="2";
int i=125;
float a=12.55;

char s[]="hello there I";
printf ("

("\n%c %d %f", ch, ch, ch);
printf

(

(

n%s %d %f", s,’s,s) ;
n%c %d %f",i i, i) ;
n%f %d\n", a,a) ;

printf
printf

=== =

}

And here’s the output ...

z 122 -9362831782501783000000000000000000000000000.000000
hello there ! 3280 -
9362831782501783000000000000000000000000000.000000

} 125 -9362831782501783000000000000000000000000000.000000

404 Let Us C

12.550000 0

I would leave it to you to analyze the results by yourselves. Some
of the conversions you would find are quite sensible.

Let us now turn our attention to scanf(). scanf() allows us to
enter data from keyboard that will be formatted in a certain way.

The general form of scanf() statement is as follows:
scanf ("format string", list of addresses of variables) ;

For example:

scanf ("%d %f %c", &c, &a, &ch) ;

Note that we are sending addresses of variables (addresses are
obtained by using ‘&’ the ‘address of’ operator) to scanf()
function. This is necessary because the values received from
keyboard must be dropped into variables corresponding to these
addresses. The values that are supplied through the keyboard must
be separated by either blank(s), tab(s), or newline(s). Do not
include these escape sequences in the format string.

All the format specifications that we learnt in printf() function are
applicable to scanf() function as well.

sprintf() and sscanf() Functions

The sprintf() function works similar to the printf() function
except for one small difference. Instead of sending the output to
the screen as printf() does, this function writes the output to an
array of characters. The following program illustrates this.

main()

{

Chapter 11: Console Input/Output 405

inti=10;
char ch="A";
float a=3.14;

char str[20] ;

printf ("\n%d %c %f", i, ch,a);
sprintf (str, "%d %c %f", i, ch, a) ;
printf ("\n%s", str) ;

}

In this program the printf() prints out the values of i, ch and a on
the screen, whereas sprintf() stores these values in the character
array str. Since the string str is present in memory what is written
into str using sprintf() doesn’t get displayed on the screen. Once
str has been built, its contents can be displayed on the screen. In
our program this was achieved by the second printf() statement.

The counterpart of sprintf() is the sscanf() function. It allows us
to read characters from a string and to convert and store them in C
variables according to specified formats. The sscanf() function
comes in handy for in-memory conversion of characters to values.
You may find it convenient to read in strings from a file and then
extract values from a string by using sscanf(). The usage of
sscanf() is same as scanf(), except that the first argument is the
string from which reading is to take place.

Unformatted Console 1/0O Functions

There are several standard library functions available under this
category—those that can deal with a single character and those
that can deal with a string of characters. For openers let us look at
those which handle one character at a time.

So far for input we have consistently used the scanf() function.
However, for some situations the scanf() function has one glaring
weakness... you need to hit the Enter key before the function can

406 Let Us C

digest what you have typed. However, we often want a function
that will read a single character the instant it is typed without
waiting for the Enter key to be hit. getch(') and getche() are two
functions which serve this purpose. These functions return the
character that has been most recently typed. The ‘e’ in getche()
function means it echoes (displays) the character that you typed to
the screen. As against this getch() just returns the character that
you typed without echoing it on the screen. getchar() works
similarly and echo’s the character that you typed on the screen, but
unfortunately requires Enter key to be typed following the
character that you typed. The difference between getchar() and
fgetchar() is that the former is a macro whereas the latter is a
function. Here is a sample program that illustrates the use of these
functions.

main()

{

char ch;

printf ("\nPress any key to continue") ;
getch() ; /* will not echo the character */

printf ("\nType any character") ;
ch = getche() ; /*will echo the character typed */

printf ("\nType any character") ;

getchar(); /*will echo character, must be followed by enter key */
printf ("\nContinue Y/N") ;

fgetchar() ; /* will echo character, must be followed by enter key */

}

And here is a sample run of this program...

Press any key to continue
Type any character B
Type any character W
Continue YIN'Y

Chapter 11: Console Input/Output 407

putch() and putchar() form the other side of the coin. They print
a character on the screen. As far as the working of putch()
putchar() and fputchar() is concerned it’s exactly same. The
following program illustrates this.

main()

{
char ch="A";

putch (ch);

putchar (ch);

fputchar (ch) ;

putch ('Z');

putchar ('Z');

fputchar ('Z') ;
}

And here is the output...
AAAZZZ

The limitation of putch(), putchar() and fputchar() is that they
can output only one character at a time.

gets() and puts()
gets() receives a string from the keyboard. Why is it needed?
Because scanf() function has some limitations while receiving
string of characters, as the following example illustrates...
main()

char name[50] ;

printf ("\nEnter name ") ;

scanf ("%s", name) ;
printf ("%s", name) ;

408 Let Us C

}

And here is the output...

Enter name Jonty Rhodes
Jonty

Surprised? Where did “Rhodes” go? It never got stored in the array
name[], because the moment the blank was typed after “Jonty”
scanf() assumed that the name being entered has ended. The result
is that there is no way (at least not without a lot of trouble on the
programmer’s part) to enter a multi-word string into a single
variable (name in this case) using scanf(). The solution to this
problem is to use gets() function. As said earlier, it gets a string
from the keyboard. It is terminated when an Enter key is hit. Thus,
spaces and tabs are perfectly acceptable as part of the input string.
More exactly, gets() gets a newline (\n) terminated string of
characters from the keyboard and replaces the \n with a \0.

The puts() function works exactly opposite to gets() function. It
outputs a string to the screen.

Here is a program which illustrates the usage of these functions:

main()

{
char footballer[40] ;

puts ("Enter name") ;

gets (footballer) ; /* sends base address of array */
puts ("Happy footballing!") ;

puts (footballer) ;

}

Following is the sample output:

Enter name

Chapter 11: Console Input/Output 409

Jonty Rhodes
Happy footballing!
Jonty Rhodes

Why did we use two puts() functions to print “Happy
footballing!” and *“Jonty Rhodes”? Because, unlike printf(),
puts() can output only one string at a time. If we attempt to print
two strings using puts(), only the first one gets printed. Similarly,
unlike scanf(), gets() can be used to read only one string at a
time.

Summary

(@ There is no keyword available in C for doing input/output.

(b) All'1/O in C is done using standard library functions.

(c) There are several functions available for performing console
input/output.

(d) The formatted console I/O functions can force the user to
receive the input in a fixed format and display the output in a
fixed format.

(e) There are several format specifiers and escape sequences
available to format input and output.

(f) Unformatted console 1/O functions work faster since they do
not have the overheads of formatting the input or output.

Exercise

[A] What would be the output of the following programs:

(@ main()

char ch;
ch = getchar() ;
if (islower (ch))
putchar (toupper (ch));
else
putchar (tolower (ch));

410 Let UsC

(b)

}

main()
{
inti=2;
float f = 2.5367 ;
char str[] = "Life is like that" ;

printf ("\n%4d\t%3.3M\t%4s", i, f, str) ;
}

main()
{
printf ("More often than \b\b not \rthe person who \
wins is the one who thinks he can!") ;
}

char p[]="The sixth sick sheikh's sixth ship is sick" ;
main()
{

inti=0;

while (p[i] I="0")

putch (plil) ;
i+t
}
}
Point out the errors, if any, in the following programs:
main()
o
inti;
char a[] = "Hello";
while (a!="0")
{

printf ("%c", *a) ;
at+

Chapter 11: Console Input/Output

411

(b)

main()

{

}

double dval ;
scanf ("%f", &dval) ;
printf ("\nDouble Value = %lIf", dval) ;

main()

{

}

int ival ;
scanf ("%d\n", &n) ;
printf ("\nInteger Value = %d", ival) ;

main()

{

}

char *mess[5] ;
for(i=0;i<5;i++)
scanf ("%s", mess[i]) ;

main()

{

}

intdd, mm, yy ;
printf ("\nEnter day, month and year\n") ;

scanf ("%d%*c%d%*c%d", &dd, &mm, &yy) ;
printf ("The date is: %d - %d - %d", dd, mm, yy) ;

main()

{

}

char text ;

sprintf (text, "%4d\t%2.2f\n%s", 12, 3.452, "Merry Go Round") ;

printf ("\n%s", text) ;

main()

char buffer[50] ;

412 Let Us C

int no =97,
double val = 2.34174 ,
char name[10] = "Shweta" ;

sprintf (buffer, "%d %lIf %s", no, val, name) ;

printf ("\n%s", buffer) ;

sscanf (buffer, "%4d %2.2If %s", &no, &val, name) ;
printf ("\n%s", buffer) ;

printf ("\n%d %lf %s", no, val, name) ;

}

[C] Answer the following:

(a)

(b)

()

To receive the string "We have got the guts, you get the
glory!™ in an array char str[100] which of the following
functions would you use?

scanf ("%s", str) ;
gets (str);

getche (str);
fgetchar (str) ;

PR

Which function would you use if a single key were to be
received through the keyboard?

scanf()
gets()
getche()
getchar()

el NS =

If an integer is to be entered through the keyboard, which
function would you use?

scanf()
gets()
getche()
getchar()

PR

Chapter 11: Console Input/Output 413

(d)

(e)

()

(@)

[O]
(a)

(b)

If a character string is to be received through the keyboard
which function would work faster?

1. scanf()
2. gets()

What is the difference between getchar(), fgetchar(),
getch()) and getche()?

The format string of a printf() function can contain:

1. Characters, format specifications and escape sequences

2. Character, integers and floats

3. Strings, integers and escape sequences

4. Inverted commas, percentage sign and backslash character

A field-width specifier in a printf() function:

1. Controls the margins of the program listing

2. Specifies the maximum value of a number

3. Controls the size of type used to print numbers

4. Specifies how many columns will be used to print the
number

Answer the following:

Write down two functions xgets() and xputs() which work

similar to the standard library functions gets(') and puts().

Write down a function getint(), which would receive a

numeric string from the keyboard, convert it to an integer
number and return the integer to the calling function. A
sample usage of getint() is shown below:

main()

{

int a;

414 Let Us C

a = getint() ;
printf ("you entered %d", a)
}

12 File Input/Output

Data Organization
File Operations
Opening a File
Reading from a File
Trouble in Opening a File
Closing the File
Counting Characters, Tabs, Spaces, ..._
A File-copy Program
Writing to a File
File Opening Modes
String (line) I/O in Files
The Awkward Newline
Record 1/0 in Files
Text Files and Binary Files
Record 1/0 Revisited
Database Management
Low Level Disk I/O
A Low Level File-copy Program
I/0 Under Windows

e Summary

Exercise

415

416 Let UsC

This is because if the data is large, only a limited amount

of it can be stored in memory and only a limited amount
of it can be displayed on the screen. It would be inappropriate to
store this data in memory for one more reason. Memory is volatile
and its contents would be lost once the program is terminated. So
if we need the same data again it would have to be either entered
through the keyboard again or would have to be regenerated
programmatically. Obviously both these operations would be
tedious. At such times it becomes necessary to store the data in a
manner that can be later retrieved and displayed either in part or in
whole. This medium is usually a “file’ on the disk. This chapter
discusses how file 1/0 operations can be performed.

Often it is not enough to just display the data on the screen.

Data Organization

Before we start doing file input/output let us first find out how data
is organized on the disk. All data stored on the disk is in binary
form. How this binary data is stored on the disk varies from one
OS to another. However, this does not affect the C programmer
since he has to use only the library functions written for the
particular OS to be able to perform input/output. It is the compiler
vendor’s responsibility to correctly implement these library
functions by taking the help of OS. This is illustrated in Figure
12.1.

C Library
functions

Our program

Figure 12.1

Chapter 12: File Input/Output 417

File Operations

There are different operations that can be carried out on a file.
These are:

(@) Creation of a new file

(b) Opening an existing file

(c) Reading from a file

(d) Writing to a file

(e) Moving to a specific location in a file (seeking)
() Closing a file

Let us now write a program to read a file and display its contents
on the screen. We will first list the program and show what it does,
and then dissect it line by line. Here is the listing...

I* Display contents of a file on screen. */
include "stdio.h"

main()

{
FILE *fp;
char ch;

fp = fopen ("PR1.C","r");

while (1)
{
ch=fgetc (fp);
if (ch==EOF)
break ;

printf ("%c", ch) ;
}

fclose (fp) ;

418 Let UsC

On execution of this program it displays the contents of the file
‘PR1.C’ on the screen. Let us now understand how it does the
same.

Opening a File

Before we can read (or write) information from (to) a file on a disk
we must open the file. To open the file we have called the function
fopen(). It would open a file “PR1.C” in ‘read” mode, which tells
the C compiler that we would be reading the contents of the file.
Note that “r” is a string and not a character; hence the double
quotes and not single quotes. In fact fopen() performs three
important tasks when you open the file in “r” mode:

(a) Firstly it searches on the disk the file to be opened.

(b) Then it loads the file from the disk into a place in memory
called buffer.

(c) It sets up a character pointer that points to the first character
of the buffer.

Why do we need a buffer at all? Imagine how inefficient it would
be to actually access the disk every time we want to read a
character from it. Every time we read something from a disk, it
takes some time for the disk drive to position the read/write head
correctly. On a floppy disk system, the drive motor has to actually
start rotating the disk from a standstill position every time the disk
is accessed. If this were to be done for every character we read
from the disk, it would take a long time to complete the reading
operation. This is where a buffer comes in. It would be more
sensible to read the contents of the file into the buffer while
opening the file and then read the file character by character from
the buffer rather than from the disk. This is shown in Figure 12.2.

Chapter 12: File Input/Output 419

PR1.C
Memory

40

DISK

Buffer

fpl

40

Figure 12.2

Same argument also applies to writing information in a file.
Instead of writing characters in the file on the disk one character at
a time it would be more efficient to write characters in a buffer and
then finally transfer the contents from the buffer to the disk.

To be able to successfully read from a file information like mode
of opening, size of file, place in the file from where the next read
operation would be performed, etc. has to be maintained. Since all
this information is inter-related, all of it is gathered together by
fopen() in a structure called FILE. fopen() returns the address of
this structure, which we have collected in the structure pointer
called fp. We have declared fp as

FILE *fp;

420 Let UsC

The FILE structure has been defined in the header file “stdio.h”
(standing for standard input/output header file). Therefore, it is
necessary to #include this file.

Reading from a File

Once the file has been opened for reading using fopen(), as we
have seen, the file’s contents are brought into buffer (partly or
wholly) and a pointer is set up that points to the first character in
the buffer. This pointer is one of the elements of the structure to
which fp is pointing (refer Figure 12.2).

To read the file’s contents from memory there exists a function
called fgetc(). This has been used in our program as,

ch=fgetc (fp);

fgetc() reads the character from the current pointer position,
advances the pointer position so that it now points to the next
character, and returns the character that is read, which we collected
in the variable ch. Note that once the file has been opened, we no
longer refer to the file by its name, but through the file pointer fp.

We have used the function fgetc() within an indefinite while loop.
There has to be a way to break out of this while. When shall we
break out... the moment we reach the end of file. But what is end
of file? A special character, whose ASCII value is 26, signifies end
of file. This character is inserted beyond the last character in the
file, when it is created.

While reading from the file, when fgetc() encounters this special
character, instead of returning the character that it has read, it
returns the macro EOF. The EOF macro has been defined in the
file “stdio.h”. In place of the function fgetc() we could have as
well used the macro getc() with the same effect.

Chapter 12: File Input/Output 421

In our program we go on reading each character from the file till
end of file is not met. As each character is read we display it on the
screen. Once out of the loop, we close the file.

Trouble in Opening a File

There is a possibility that when we try to open a file using the
function fopen(), the file may not be opened. While opening the
file in “r” mode, this may happen because the file being opened
may not be present on the disk at all. And you obviously cannot
read a file that doesn’t exist. Similarly, while opening the file for
writing, fopen() may fail due to a number of reasons, like, disk
space may be insufficient to open a new file, or the disk may be
write protected or the disk is damaged and so on.

Crux of the matter is that it is important for any program that
accesses disk files to check whether a file has been opened
successfully before trying to read or write to the file. If the file
opening fails due to any of the several reasons mentioned above,
the fopen() function returns a value NULL (defined in “stdio.h”
as #define NULL 0). Here is how this can be handled in a
program...

#include "stdio.h"

main()
{
FILE *fp;
fp = fopen ("PR1.C","r");
if (fp==NULL)
{

puts (“cannot open file") ;
exit() ;
}
}

422 Let Us C

Closing the File

When we have finished reading from the file, we need to close it.
This is done using the function fclose() through the statement,

fclose (fp) ;

Once we close the file we can no longer read from it using getc()
unless we reopen the file. Note that to close the file we don’t use
the filename but the file pointer fp. On closing the file the buffer
associated with the file is removed from memory.

In this program we have opened the file for reading. Suppose we
open a file with an intention to write characters into it. This time
too a buffer would get associated with it. When we attempt to
write characters into this file using fputc() the characters would
get written to the buffer. When we close this file using fclose()
three operations would be performed:

(@) The characters in the buffer would be written to the file on the
disk.

(b) At the end of file a character with ASCII value 26 would get
written.

(c) The buffer would be eliminated from memory.

You can imagine a possibility when the buffer may become full
before we close the file. In such a case the buffer’s contents would
be written to the disk the moment it becomes full. All this buffer
management is done for us by the library functions.

Counting Characters, Tabs, Spaces, ...

Having understood the first file 1/0O program in detail let us now
try our hand at one more. Let us write a program that will read a
file and count how many characters, spaces, tabs and newlines are
present in it. Here is the program...

Chapter 12: File Input/Output 423

* Count chars, spaces, tabs and newlines in a file */
include "stdio.h"

main()

{
FILE *fp;
char ch;

int nol=0,not=0,nob=0,n0c=0;

fp = fopen ("PR1.C", "r");

while (1)
{
ch=fgetc (fp);
if (ch==EOF)
break :
noc++ ;
if(ch=="")
nob++ ;
if (ch=="n")
nol++ ;
if (ch=="t")
not++ ;
}
fclose (fp) ;
printf ("\nNumber of characters = %d", noc) ;
printf ("\nNumber of blanks = %d", nob) ;
printf ("\nNumber of tabs = %d", not) ;
printf ("\nNumber of lines = %d", nol) ;

424 Let Us C

Here is a sample run...

Number of characters = 125
Number of blanks = 25
Number of tabs = 13
Number of lines = 22

The above statistics are true for a file “PR1.C”, which I had on my
disk. You may give any other filename and obtain different results.
I believe the program is self-explanatory.

In this program too we have opened the file for reading and then
read it character by character. Let us now try a program that needs
to open a file for writing.

A File-copy Program

We have already used the function fgetc() which reads characters
from a file. Its counterpart is a function called fputc() which
writes characters to a file. As a practical use of these character 1/0
functions we can copy the contents of one file into another, as
demonstrated in the following program. This program takes the
contents of a file and copies them into another file, character by
character.

#include "stdio.h"

main()

{
FILE *fs, *ft
char ch;

fs = fopen ("prl.c","r");

if (fs == NULL)

{
puts ("Cannot open source file") ;
exit() ;

Chapter 12: File Input/Output 425

}

ft = fopen ("pr2.c", "w") ;

if (ft==NULL)

{
puts ("Cannot open target file") ;
fclose (fs);
exit() ;

}

while (1)

{
ch =fgetc (fs);

if (ch==EOF)
break :
else
fputc (ch, ft) ;
}

fclose (fs) ;
fclose (ft);

I hope most of the stuff in the program can be easily understood,
since it has already been dealt with in the earlier section. What is
new is only the function fputc(). Let us see how it works.

Writing to a File

The fputc() function is similar to the putch() function, in the
sense that both output characters. However, putch() function
always writes to the VDU, whereas, fputc() writes to the file.
Which file? The file signified by ft. The writing process continues
till all characters from the source file have been written to the
target file, following which the while loop terminates.

426

Let UsC

Note that our sample file-copy program is capable of copying only
text files. To copy files with extension .EXE or .COM, we need to
open the files in binary mode, a topic that would be dealt with in
sufficient detail in a later section.

File Opening Modes

In our first program on disk 1/0 we have opened the file in read
(“r’) mode. However, “r” is but one of the several modes in which
we can open a file. Following is a list of all possible modes in
which a file can be opened. The tasks performed by fopen() when
a file is opened in each of these modes are also mentioned.

llrll

"I"+"

Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer which points to
the first character in it. If the file cannot be opened fopen()
returns NULL.

Operations possible — reading from the file.

Searches file. If the file exists, its contents are overwritten.
If the file doesn’t exist, a new file is created. Returns
NULL, if unable to open file.

Operations possible — writing to the file.

Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer that points to the
last character in it. If the file doesn’t exist, a new file is
created. Returns NULL, if unable to open file.

Operations possible - adding new contents at the end of file.
Searches file. If is opened successfully fopen() loads it into

memory and sets up a pointer which points to the first
character in it. Returns NULL, if unable to open the file.

Chapter 12: File Input/Output 427

Operations possible - reading existing contents, writing new
contents, modifying existing contents of the file.

w+" Searches file. If the file exists, its contents are overwritten.
If the file doesn’t exist a new file is created. Returns NULL,
if unable to open file.

Operations possible - writing new contents, reading them
back and modifying existing contents of the file.

"at" Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer which points to
the first character in it. If the file doesn’t exist, a new file is
created. Returns NULL, if unable to open file.

Operations possible - reading existing contents, appending
new contents to end of file. Cannot modify existing
contents.

String (line) 1/O in Files

For many purposes, character 1/0 is just what is needed. However,
in some situations the usage of functions that read or write entire
strings might turn out to be more efficient.

Reading or writing strings of characters from and to files is as easy
as reading and writing individual characters. Here is a program
that writes strings to a file using the function fputs().

I* Receives strings from keyboard and writes them to file */
#include "stdio.h"
main()
{
FILE *fp;
char s[80];

428 Let UsC

fp =fopen ("POEM.TXT", "W") ;
if (fp==NULL)
{
puts ("Cannot open file") ;
exit() ;
}

printf ("\nEnter a few lines of text:\n") ;
while (strlen (gets (s))>0)

{
fputs (s, fp);
fputs ("\n", fp) ;
}
fclose (fp) ;

}

And here is a sample run of the program...

Enter a few lines of text:

Shining and bright, they are forever,
so true about diamonds,

more so of memories,

especially yours !

Note that each string is terminated by hitting enter. To terminate
the execution of the program, hit enter at the beginning of a line.
This creates a string of zero length, which the program recognizes
as the signal to close the file and exit.

We have set up a character array to receive the string; the fputs()
function then writes the contents of the array to the disk. Since
fputs(') does not automatically add a newline character to the end
of the string, we must do this explicitly to make it easier to read
the string back from the file.

Here is a program that reads strings from a disk file.

Chapter 12: File Input/Output 429

* Reads strings from the file and displays them on screen */
#include "stdio.h"
main()
{
FILE *fp;
char s[80];

fp = fopen ("POEM.TXT", 'r") ;
if (fp==NULL)
{
puts ("Cannot open file") ;
exit() ;
}

while (fgets (s, 79, fp) = NULL)
printf ("%s",s);

fclose (fp) ;
}

And here is the output...

Shining and bright, they are forever,
so true about diamonds,

more so of memories,

especially yours !

The function fgets() takes three arguments. The first is the address
where the string is stored, and the second is the maximum length
of the string. This argument prevents fgets() from reading in too
long a string and overflowing the array. The third argument, as
usual, is the pointer to the structure FILE. When all the lines from
the file have been read, we attempt to read one more line, in which
case fgets() returns a NULL.

430 Let Us C

The Awkward Newline

We had earlier written a program that counts the total number of
characters present in a file. If we use that program to count the
number of characters present in the above poem (stored in the file
“POEM.TXT?”), it would give us the character count as 101. The
same file if seen in the directory, would be reported to contain 105
characters.

This discrepancy occurs because when we attempt to write a “\n”
to the file using fputs(), fputs() converts the \n to \r\n
combination. Here \r stands for carriage return and \n for linefeed.
If we read the same line back using fgets() the reverse conversion
happens. Thus when we write the first line of the poem and a “\n”
using two calls to fputs(), what gets written to the file is

Shining and bright, they are forever,\r\n

When the same line is read back into the array s[] using fgets(),
the array contains

Shining and bright, they are forever,\n\0

Thus conversion of \n to \r\n during writing and \r\n conversion to
\n during reading is a feature of the standard library functions and
not that of the OS. Hence the OS counts \r and \n as separate
characters. In our poem there are four lines, therefore there is a
discrepancy of four characters (105 - 101).

Record I/O in Files

So far we have dealt with reading and writing only characters and
strings. What if we want to read or write numbers from/to file?
Furthermore, what if we desire to read/write a combination of
characters, strings and numbers? For this first we would organize
this dissimilar data together in a structure and then use fprintf()

Chapter 12: File Input/Output 431

and fscanf() library functions to read/write data from/to file.
Following program illustrates the use of structures for writing
records of employees.

[* Writes records to a file using structure */
#include "stdio.h"

main()

{
FILE *fp;
char another="'Y";
struct emp

char name[40] ;
int age;
float bs;

b

structemp e;

fp = fopen ("EMPLOYEE.DAT", "w") ;

if (fp ==NULL)

{
puts ("Cannot open file") ;
exit() ;

}

while (another =="'Y")

{
printf ("\nEnter name, age and basic salary: ") ;
scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
fprintf (fp, "%s %d %f\n", e.name, e.age, e.bs) ;
printf ("Add another record (Y/N) ") ;
fflush (stdin) ;
another = getche() ;

}

fclose (fp) ;

432 Let Us C

}
And here is the output of the program...

Enter name, age and basic salary: Sunil 34 1250.50
Add another record (Y/N) Y

Enter name, age and basic salary: Sameer 21 1300.50
Add another record (Y/N) Y

Enter name, age and basic salary: Rahul 34 1400.55
Add another record (Y/N) N

In this program we are just reading the data into a structure
variable using scanf(), and then dumping it into a disk file using
fprintf(). The user can input as many records as he desires. The
procedure ends when the user supplies ‘N’ for the question ‘Add
another record (Y/N)’.

The key to this program is the function fprintf(), which writes the
values in the structure variable to the file. This function is similar
to printf(), except that a FILE pointer is included as the first
argument. As in printf(), we can format the data in a variety of
ways, by using fprintf(). In fact all the format conventions of
printf() function work with fprintf() as well.

Perhaps you are wondering what for have we used the function
fflush(). The reason is to get rid of a peculiarity of scanf(). After
supplying data for one employee, we would hit the enter key. What
scanf() does is it assigns name, age and salary to appropriate
variables and keeps the enter key unread in the keyboard buffer.
So when it’s time to supply Y or N for the question ‘Another
employee (Y/N)’, getch() will read the enter key from the buffer
thinking that user has entered the enter key. To avoid this problem
we use the function fflush(). It is designed to remove or ‘flush
out’ any data remaining in the buffer. The argument to fflush()
must be the buffer which we want to flush out. Here we have used
‘stdin’, which means buffer related with standard input
device—keyboard.

Chapter 12: File Input/Output 433

Let us now write a program that reads the employee records
created by the above program. Here is how it can be done...

* Read records from a file using structure */
#include "stdio.h"

main()
{
FILE *fp;
struct emp
char name[40] ;
int age ;
float bs;
b

struct emp e,
fp = fopen ("EMPLOYEE.DAT", "r") ;

if (fp == NULL)
{

puts ("Cannot open file") ;
exit() ;
}

while (fscanf (fp, "%s %d %f", e.name, &e.age, &e.bs) != EOF)
printf ("\n%s %d %f", e.name, e.age, e.bs) ;

fclose (fp) ;
}

And here is the output of the program...

Sunil 34 1250.500000
Sameer 21 1300.500000
Rahul 34 1400.500000

434 Let Us C

Text Files and Binary Files

All the programs that we wrote in this chapter so far worked on
text files. Some of them would not work correctly on binary files.
A text file contains only textual information like alphabets, digits
and special symbols. In actuality the ASCII codes of these
characters are stored in text files. A good example of a text file is
any C program, say PR1.C.

As against this, a binary file is merely a collection of bytes. This
collection might be a compiled version of a C program (say
PR1.EXE), or music data stored in a wave file or a picture stored
in a graphic file. A very easy way to find out whether a file is a
text file or a binary file is to open that file in Turbo C/C++. If on
opening the file you can make out what is displayed then it is a
text file, otherwise it is a binary file.

As mentioned while explaining the file-copy program, the program
cannot copy binary files successfully. We can improve the same
program to make it capable of copying text as well as binary files
as shown below.

#include "stdio.h"

main()

{
FILE *fs, *ft;
intch;

fs = fopen ("prl.exe", "rb") ;

if (fs == NULL)

{
puts ("Cannot open source file") ;
exit() ;

}

ft = fopen ("newprl.exe", "wb") ;

Chapter 12: File Input/Output 435

if (ft == NULL)
{
puts ("Cannot open target file") ;
fclose (fs) ;
exit() ;
}
while (1)
{
ch=fgetc (fs);
if (ch==EOF)
break ;
else
fputc (ch, ft) ;
}
fclose (fs);
fclose (ft);

}

Using this program we can comfortably copy text as well as binary
files. Note that here we have opened the source and target files in
“rb” and “wb” modes respectively. While opening the file in text
mode we can use either “r” or “rt”, but since text mode is the
default mode we usually drop the “t’.

From the programming angle there are three main areas where text
and binary mode files are different. These are:

(@) Handling of newlines
(b) Representation of end of file
(c) Storage of numbers

Let us explore these three differences.

436 Let Us C

Text versus Binary Mode: Newlines

We have already seen that, in text mode, a newline character is
converted into the carriage return-linefeed combination before
being written to the disk. Likewise, the carriage return-linefeed
combination on the disk is converted back into a newline when the
file is read by a C program. However, if a file is opened in binary
mode, as opposed to text mode, these conversions will not take
place.

Text versus Binary Mode: End of File

The second difference between text and binary modes is in the way
the end-of-file is detected. In text mode, a special character, whose
ASCII value is 26, is inserted after the last character in the file to
mark the end of file. If this character is detected at any point in the
file, the read function would return the EOF signal to the program.

As against this, there is no such special character present in the
binary mode files to mark the end of file. The binary mode files
keep track of the end of file from the number of characters present
in the directory entry of the file.

There is a moral to be derived from the end of file marker of text
mode files. If a file stores numbers in binary mode, it is important
that binary mode only be used for reading the numbers back, since
one of the numbers we store might well be the number 26
(hexadecimal 1A). If this number is detected while we are reading
the file by opening it in text mode, reading would be terminated
prematurely at that point.

Thus the two modes are not compatible. See to it that the file that
has been written in text mode is read back only in text mode.
Similarly, the file that has been written in binary mode must be
read back only in binary mode.

Chapter 12: File Input/Output 437

Text versus Binary Mode: Storage of Numbers

The only function that is available for storing numbers in a disk
file is the fprintf() function. It is important to understand how
numerical data is stored on the disk by fprintf(). Text and
characters are stored one character per byte, as we would expect.
Are numbers stored as they are in memory, two bytes for an
integer, four bytes for a float, and so on? No.

Numbers are stored as strings of characters. Thus, 1234, even
though it occupies two bytes in memory, when transferred to the
disk using fprintf(), would occupy four bytes, one byte per
character. Similarly, the floating-point number 1234.56 would
occupy 7 bytes on disk. Thus, numbers with more digits would
require more disk space.

Hence if large amount of numerical data is to be stored in a disk
file, using text mode may turn out to be inefficient. The solution is
to open the file in binary mode and use those functions (fread()
and fwrite() which are discussed later) which store the numbers in
binary format. It means each number would occupy same number
of bytes on disk as it occupies in memory.

Record 1/0O Revisited

The record 1/0 program that we did in an earlier section has two
disadvantages:

(@) The numbers (basic salary) would occupy more number of
bytes, since the file has been opened in text mode. This is
because when the file is opened in text mode, each number is
stored as a character string.

(b) If the number of fields in the structure increase (say, by
adding address, house rent allowance etc.), writing structures

438 Let Us C

using fprintf(), or reading them using fscanf(), becomes
quite clumsy.

Let us now see a more efficient way of reading/writing records
(structures). This makes use of two functions fread() and
fwrite(). We will write two programs, first one would write
records to the file and the second would read these records from
the file and display them on the screen.

I* Receives records from keyboard and writes them to a file in binary mode */
#include "stdio.h"

main()

{
FILE *fp;
char another="Y";
struct emp

char name[40] ;
int age ;
float bs;

b

structemp e;

fp = fopen ("EMP.DAT", "wb") ;

if (fp==NULL)

{
puts ("Cannot open file") ;
exit() ;

}

while (‘another =="Y")

{

printf ("\nEnter name, age and basic salary: ") ;
scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
fwrite (&e, sizeof (e), 1,p);

printf ("Add another record (Y/N) ") ;

Chapter 12: File Input/Output 439

fflush (stdin) ;
another = getche() ;
}
fclose (fp) ;

}

And here is the output...

Enter name, age and basic salary: Suresh 24 1250.50
Add another record (Y/N) Y
Enter name, age and basic salary: Ranjan 21 1300.60
Add another record (Y/N) Y
Enter name, age and basic salary: Harish 28 1400.70
Add another record (Y/N) N

Most of this program is similar to the one that we wrote earlier,
which used fprintf() instead of fwrite(). Note, however, that the
file “EMP.DAT” has now been opened in binary mode.

The information obtained from the keyboard about the employee is
placed in the structure variable e. Then, the following statement
writes the structure to the file:

fwrite (&e, sizeof (e), 1,fp);

Here, the first argument is the address of the structure to be written
to the disk.

The second argument is the size of the structure in bytes. Instead
of counting the bytes occupied by the structure ourselves, we let
the program do it for us by using the sizeof() operator. The
sizeof() operator gives the size of the variable in bytes. This keeps
the program unchanged in event of change in the elements of the
structure.

440 Let UsC

The third argument is the number of such structures that we want
to write at one time. In this case, we want to write only one
structure at a time. Had we had an array of structures, for example,
we might have wanted to write the entire array at once.

The last argument is the pointer to the file we want to write to.

Now, let us write a program to read back the records written to the
disk by the previous program.

* Reads records from binary file and displays them on VDU */
#include "stdio.h"

main()
{
FILE *fp;
struct emp
char name[40] ;
int age;
float bs;
};

structemp e;
fp = fopen ("EMP.DAT", "rb") ;

if (fp == NULL)
{

puts ("Cannot open file") ;
exit() ;
}

while (fread (&e, sizeof (e),1,fp)==1)
printf ("\n%s %d %f", e.name, e.age, e.bs) ;

fclose (fp) ;

Chapter 12: File Input/Output 441

Here, the fread() function causes the data read from the disk to be
placed in the structure variable e. The format of fread() is same as
that of fwrite(). The function fread() returns the number of
records read. Ordinarily, this should correspond to the third
argument, the number of records we asked for... 1 in this case. If
we have reached the end of file, since fread() cannot read
anything, it returns a 0. By testing for this situation, we know
when to stop reading.

As you can now appreciate, any database management application
in C must make use of fread() and fwrite() functions, since they
store numbers more efficiently, and make writing/reading of
structures quite easy. Note that even if the number of elements
belonging to the structure increases, the format of fread() and
fwrite() remains same.

Database Management

So far we have learnt record I/O in bits and pieces. However, in
any serious database management application, we will have to
combine all that we have learnt in a proper manner to make sense.
I have attempted to do this in the following menu driven program.
There is a provision to Add, Modify, List and Delete records, the
operations that are imperative in any database management.
Following comments would help you in understanding the
program easily:

— Addition of records must always take place at the end of
existing records in the file, much in the same way you would
add new records in a register manually.

— Listing records means displaying the existing records on the
screen. Naturally, records should be listed from first record to
last record.

— While modifying records, first we must ask the user which
record he intends to modify. Instead of asking the record

442 Let Us C

number to be modified, it would be more meaningful to ask for
the name of the employee whose record is to be modified. On
modifying the record, the existing record gets overwritten by
the new record.

In deleting records, except for the record to be deleted, rest of
the records must first be written to a temporary file, then the
original file must be deleted, and the temporary file must be
renamed back to original.

Observe carefully the way the file has been opened, first for
reading & writing, and if this fails (the first time you run this
program it would certainly fail, because that time the file is not
existing), for writing and reading. It is imperative that the file
should be opened in binary mode.

Note that the file is being opened only once and closed only
once, which is quite logical.

clrscr() function clears the contents of the screen and
gotoxy() places the cursor at appropriate position on the
screen. The parameters passed to gotoxy() are column number
followed by row number.

Given below is the complete listing of the program.

* A menu-driven program for elementary database management */
#include "stdio.h"

main()

{
FILE *fp, *t;
char another, choice ;
struct emp

char name[40] ;
int age ;
float bs;

}s

Chapter 12: File Input/Output 443

structemp e
char empname[40] ;
long int recsize ;

fp = fopen ("EMP.DAT", "rb+") ;

if (fp == NULL)

{
fp = fopen ("EMP.DAT", "wh+") ;

if (fp == NULL)
{
puts ("Cannot open file") ;
exit() ;
}
}

recsize = sizeof (e) ;

while (1)
{

clrser() ;

gotoxy (30, 10);

printf ("1. Add Records") ;
gotoxy (30, 12);

printf ("2. List Records") ;
gotoxy (30, 14) ;

printf ("3. Modify Records") ;
gotoxy (30, 16) ;

printf ("4. Delete Records") ;
gotoxy (30, 18) ;

printf ("0. Exit") ;

gotoxy (30,20);

printf ("Your choice") ;

fflush ('stdin) ;
choice = getche() ;

444 Let Us C

switch (choice)

{

case'l":

fseek (fp, 0, SEEK_END);
another ='Y":

while (another =='Y")

{

printf ("\nEnter name, age and basic sal. ") ;
scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
fwrite (&e, recsize, 1,1p);

printf ("\nAdd another Record (Y/N) ") ;

fflush (stdin) ;

another = getche() ;

}

break :
case 2':
rewind (fp);

while (fread (&e, recsize, 1,fp)==1)
printf ("\n%s %d %f", e.name, e.age, e.bs) ;

break ;
case '3':

another ='Y";

while (another =="'Y")

{
printf ("\nEnter name of employee to modify ") ;
scanf ("%s", empname) ;

rewind (fp);
while (fread (&e, recsize, 1,fp)==1)

Chapter 12: File Input/Output 445

{
if (strcmp (e.name, empname) ==0)
{
printf ("\nEnter new name, age & bs") ;
scanf ("%s %d %f", e.name, &e.age,
&e.bs);
fseek (fp, - recsize, SEEK_CUR) ;
fwrite (&e, recsize, 1,1p);
break ;
}
}
printf ("\nModify another Record (Y/N) ") ;
fflush (stdin) ;
another = getche() ;
}
break :
case '4':
another ='Y';
while (another =="'Y")
{

printf ("\nEnter name of employee to delete ") ;
scanf ("%s", empname) ;

ft = fopen ("TEMP.DAT", "wb") ;

rewind (fp) ;
while (fread (&e, recsize, 1,fp)==1)
{
if (strcmp (e.name, empname) I=0)
fwrite (&e, recsize, 1, ft);

}

fclose (fp) ;
fclose (ft);

446 Let UsC

remove ("EMP.DAT") ;
rename ("TEMP.DAT", "EMP.DAT") ;

fp = fopen ("EMP.DAT", "rb+") ;

printf ("Delete another Record (Y/N) ") ;
fflush (stdin) ;
another = getche() ;

}

break ;

case'0':
fclose (fp) ;
exit() ;

}

To understand how this program works, you need to be familiar
with the concept of pointers. A pointer is initiated whenever we
open a file. On opening a file a pointer is set up which points to the
first record in the file. To be precise this pointer is present in the
structure to which the file pointer returned by fopen() points to.
On using the functions fread() or fwrite(), the pointer moves to
the beginning of the next record. On closing a file the pointer is
deactivated. Note that the pointer movement is of utmost
importance since fread() always reads that record where the
pointer is currently placed. Similarly, fwrite() always writes the
record where the pointer is currently placed.

The rewind() function places the pointer to the beginning of the
file, irrespective of where it is present right now.

The fseek() function lets us move the pointer from one record to
another. In the program above, to move the pointer to the previous
record from its current position, we used the function,

Chapter 12: File Input/Output 447

fseek (fp, -recsize, SEEK_CUR) ;

Here, -recsize moves the pointer back by recsize bytes from the
current position. SEEK_CUR is a macro defined in “stdio.h”.

Similarly, the following fseek() would place the pointer beyond
the last record in the file.

fseek (fp, 0, SEEK_END) ;

In fact -recsize or O are just the offsets that tell the compiler by
how many bytes should the pointer be moved from a particular
position. The third argument could be SEEK_END, SEEK_CUR
or SEEK_SET. All these act as a reference from which the pointer
should be offset. SEEK_END means move the pointer from the
end of the file, SEEK_CUR means move the pointer with
reference to its current position and SEEK_SET means move the
pointer with reference to the beginning of the file.

If we wish to know where the pointer is positioned right now, we
can use the function ftell(). It returns this position as a long int
which is an offset from the beginning of the file. The value
returned by ftell() can be used in subsequent calls to fseek(). A
sample call to ftell() is shown below:

position = ftell (fp) ;

where position is a long int.

Low Level Disk 1/0O

In low level disk 1/0O, data cannot be written as individual
characters, or as strings or as formatted data. There is only one
way data can be written or read in low level disk 1/O functions—as
a buffer full of bytes.

448 Let UsC

Writing a buffer full of data resembles the fwrite() function.
However, unlike fwrite(), the programmer must set up the buffer
for the data, place the appropriate values in it before writing, and
take them out after writing. Thus, the buffer in the low level 1/0
functions is very much a part of the program, rather than being
invisible as in high level disk 1/O functions.

Low level disk 1/0 functions offer following advantages:

(@) Since these functions parallel the methods that the OS uses to
write to the disk, they are more efficient than the high level
disk 1/O functions.

(b) Since there are fewer layers of routines to go through, low
level 1/0O functions operate faster than their high level
counterparts.

Let us now write a program that uses low level disk input/output
functions.

A Low Level File-copy Program

Earlier we had written a program to copy the contents of one file to
another. In that program we had read the file character by
character using fgetc(). Each character that was read was written
into the target file using fputc(). Instead of performing the 1/0 on
a character by character basis we can read a chunk of bytes from
the source file and then write this chunk into the target file. While
doing so the chunk would be read into the buffer and would be
written to the file from the buffer. While doing so we would
manage the buffer ourselves, rather than relying on the library
functions to do so. This is what is low-level about this program.
Here is a program which shows how this can be done.

I* File-copy program which copies text, .com and .exe files */
#include "fcntl.h"
#include "types.h" [* if present in sys directory use

Chapter 12: File Input/Output 449

"c:tc\linclude\\sys\\types.h" */
#include "stat.h" /*if present in sys directory use
"c:\\tc\include\\sys\\stat.h" */

main (int argc, char *argv[])

{
char buffer[512], source [128], target [128] ;
int inhandle, outhandle, bytes ;

printf ("\nEnter source file name") ;
gets (source) ;

inhandle = open (source, O_RDONLY | O_BINARY) ;
if (inhandle ==-1)
{
puts ("Cannot open file") ;
exit() ;
}

printf ("\nEnter target file name") ;
gets (target) ;

outhandle = open (target, O_CREAT | O_BINARY | O_WRONLY,
S_IWRITE) ;
if (inhandle ==-1)
{
puts ("Cannot open file") ;
close (inhandle) ;

exit() ;
}
while (1)
{

bytes = read (inhandle, buffer, 512) ;

if (bytes>0)
write (outhandle, buffer, bytes) ;
else

450 Let Us C

break :

}

close (inhandle) ;
close (outhandle) ;

}

Declaring the Buffer

The first difference that you will notice in this program is that we
declare a character buffer,

char buffer[512] ;

This is the buffer in which the data read from the disk will be
placed. The size of this buffer is important for efficient operation.
Depending on the operating system, buffers of certain sizes are
handled more efficiently than others.

Opening a File

We have opened two files in our program, one is the source file
from which we read the information, and the other is the target file
into which we write the information read from the source file.

As in high level disk 1/0, the file must be opened before we can
access it. This is done using the statement,

inhandle = open (source, O_RDONLY | O_BINARY) ;

We open the file for the same reason as we did earlier—to
establish communication with operating system about the file. As
usual, we have to supply to open(), the filename and the mode in
which we want to open the file. The possible file opening modes
are given below:

O_APPEND - Opens a file for appending

Chapter 12: File Input/Output 451

O_CREAT - Creates a new file for writing (has no effect
if file already exists)

O_RDONLY - Creates a new file for reading only

O_RDWR - Creates a file for both reading and writing

O_WRONLY - Creates a file for writing only

O_BINARY - Creates a file in binary mode

O TEXT - Creates a file in text mode

These ‘O-flags’ are defined in the file “fcntl.h”. So this file must
be included in the program while usng low level disk 1/0. Note
that the file “stdio.h” is not necessary for low level disk 1/0. When
two or more O-flags are used together, they are combined using
the bitwise OR operator (|). Chapter 14 discusses bitwise
operators in detail.

The other statement used in our program to open the file is,

outhandle = open (target, O_CREAT | O_BINARY | O_WRONLY,
S_IWRITE);

Note that since the target file is not existing when it is being
opened we have used the O_CREAT flag, and since we want to
write to the file and not read from it, therefore we have used
O_WRONLY. And finally, since we want to open the file in
binary mode we have used O_BINARY.

Whenever O_CREAT flag is used, another argument must be
added to open() function to indicate the read/write status of the
file to be created. This argument is called *permission argument’.
Permission arguments could be any of the following:

S_IWRITE - Writing to the file permitted
S_IREAD - Reading from the file permitted

452 Let Us C

To use these permissions, both the files “types.h” and “stat.h” must
be #included in the program alongwith “fcntl.h”.

File Handles

Instead of returning a FILE pointer as fopen() did, in low level
disk 1/0, open(') returns an integer value called “file handle’. This
is a number assigned to a particular file, which is used thereafter to
refer to the file. If open() returns a value of -1, it means that the
file couldn’t be successfully opened.

Interaction between Buffer and File

The following statement reads the file or as much of it as will fit
into the buffer:

bytes = read (inhandle, buffer, 512) ;

The read() function takes three arguments. The first argument is
the file handle, the second is the address of the buffer and the third
is the maximum number of bytes we want to read.

The read() function returns the number of bytes actually read.
This is an important number, since it may very well be less than
the buffer size (512 bytes), and we will need to know just how full
the buffer is before we can do anything with its contents. In our
program we have assigned this number to the variable bytes.

For copying the file, we must use both the read() and the write()
functions in a while loop. The read() function returns the number
of bytes actually read. This is assigned to the variable bytes. This
value will be equal to the buffer size (512 bytes) until the end of
file, when the buffer will only be partially full. The variable bytes
therefore is used to tell write(), as to how many bytes to write
from the buffer to the target file.

Chapter 12: File Input/Output 453

Note that when large buffers are used they must be made global
variables otherwise stack overflow occurs.

1/0 Under Windows

As said earlier 1/0O in C is carried out using functions present in the
library that comes with the C compiler targeted for a specific OS.
Windows permits several applications to use the same screen
simultaneously. Hence there is a possibility that what is written by
one application to the console may get overwritten by the output
sent by another application to the console. To avoid such situations
Windows has completely abandoned console 1/0 functions. It uses
a separate mechanism to send output to a window representing an
application. The details of this mechanism are discussed in
Chapter 17.

Though under Windows console 1/0 functions are not used, still
functions like fprintf(), fscanf(), fread(), fwrite(), sprintf(),
sscanf() work exactly same under Windows as well.

Summary

(@) File I/O can be performed on a character by character basis, a
line by line basis, a record by record basis or a chunk by
chunk basis.

(b) Different operations that can be performed on a file are—
creation of a new file, opening an existing file, reading from a
file, writing to a file, moving to a specific location in a file
(seeking) and closing a file.

(c) File 1/0 is done using a buffer to improve the efficiency.

(d) A file can be a text file or a binary file depending upon its
contents.

(e) Library functions convert \n to \r\n or vice versa while
writing/reading to/from a file.

454 Let Us C

() Many library functions convert a number to a numeric string
befo