AMIETE – ET (OLD SCHEME)

Code: AE11 Time: 3 Hours

JUNE 2010

Subject: CONTROL ENGINEERING

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

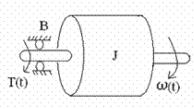
Choose the correct or the best alternative in the following: **Q.1**

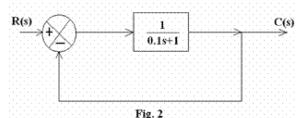
 (2×10)

a. For the system

$$_{\rm m}^{\rm GH(s) = \frac{5}{s(s-1)}}$$
, letting $s = j \otimes as \otimes \rightarrow 0$, $\angle {\rm GH(j \otimes)} \rightarrow$

- (A) -90° + a small angle (B) -270° + a small angle
- (C) -180° + a small angle
- **(D)** 0° + a small angle





b. For the inertia-damper rotational system with a rigid shaft shown in Fig. 1 the torque equation is:

- (A) $0.2s^{T(t)} = J \frac{d\omega(t)}{dt}$ (B) $T(t) = J \frac{d\omega(t)}{dt} B\omega(t)$
- (C) $T(s) = Js\omega(s) + B\omega(s)$
- (D) $T(s) B\omega(s) = J\omega(s)$

c. The output
$$c(t)$$
 for an impulse input $r(t) = \delta(t)$ for the system of Fig. 2 is:

(A) $10e^{20 t}$

(B) $10e^{-20 t}$

(C) 10e^t

(D) $10e^{-t}$

d. The time constant of the second order-system
$$G(s) = \frac{12}{s(s+0.2)}$$
, $H(s) = 1$, is:

(A) 0.2s

(B) 12s

(C) 60s

(D) 10s

e. The origin for the frequency response plot is
$$(0 \text{ dB gain}, -180^{\circ} \text{ phase})$$
 in:

- (A) Root-locus
- (B) Nichols chart
- (C) Nyquist plot
- **(D)** None of these

The type of the system and the velocity error constant K_{v} for the system with $G(s) = \frac{5(3s+1)}{(s^2+2s)(4s^2+s+1)}, H(s) = 1$ are given by:

(A) 1 and $\frac{15}{4}$

(B) 1 and $\frac{5}{4}$

(C) 1 and $\frac{1}{2}$

- **(D)** 1 and $\frac{1}{2}$
- g. The point of intersection of the asymptotes (centroid) for the root-locus of the system $G(s) = \frac{K(s+5)}{s(s+2)(s+3)}, H(s) = 1$ is:
 - **(A)** 0

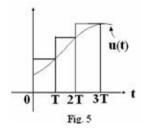
(B) 2

(C) 3

- **(D)** 5
- h. Application of Routh-Hurwitz criterion to the system of Fig. 3 shows that it will be unstable for:
- **(A)** K ≥ 1
- **(C)** K ≥ 4

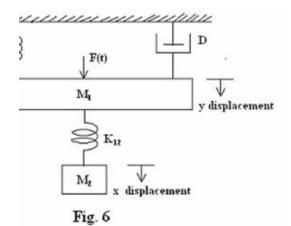
- (B) (D) R(s) $S(s^2+s+2)$ Fig. 3
- i. The basic circuit of Fig. 4 represents a:
 - (A) lag compensator
 - (B) lead compensator
 - (C) lag-lead compensator
 - (D) lead-lag compensator

- $\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$
- j. While using digital implementation of analog compensators, the integral approximation procedure shown in Fig. 5 is called:
 - (A) forward rectangular rule
 - (B) forward difference approximator
 - (C) trapezoidal rule
 - (D) backward rectangular rule



Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Consider an external force F(t) applied to mass M_1 as in Fig. 6. Write the free-body diagram and the differential equations. Draw the electrical equivalent network using force-current analogy. (8)

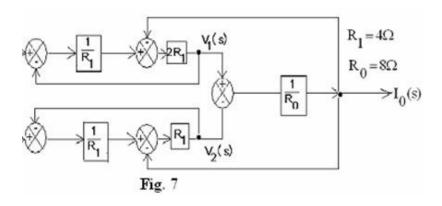


12/26/11 Code: A-20

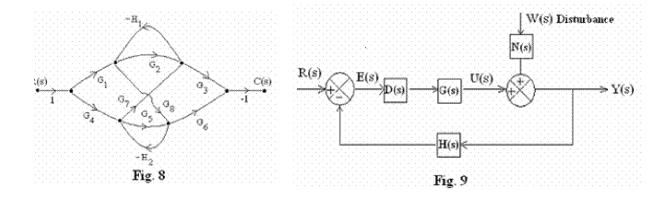
b. With a neat diagram, explain the function of an ac tacho-generator and obtain its transfer function.

(8)

Q.3 a. Using block-diagram reduction technique, find the closed-loop transfer function of Fig 7. (8)



b. Obtain the overall transfer function of the system whose signal-flow graph is shown in Fig. 8, using Mason's gain formula. (8)



12/26/11 Code: A-20

Q.4 a. Consider the feedback control system of Fig. 9 with a disturbance input W(s). Show that feedback reduces the effect of disturbance on the controlled output. Obtain the sensitivity function $S(j\omega)$ of the system and the

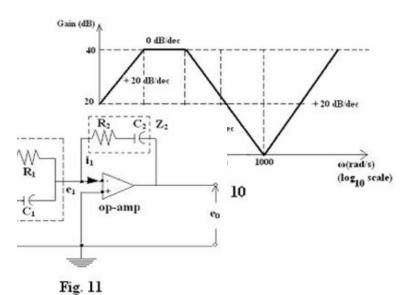
disturbance transfer function W(S). How is disturbance rejection accomplished? **(8)**

- b. Determine the damping ratio ς and the values of 'a' and 'b' if the first overshoot is 16% and time-constant is 0.1 sec for the system forward path transfer function $G(S)=10/S^2$ and feed back H(S)=(as+b).
- a. Use Routh stability criterion to check the stability of systems with characteristic equation: (i) $s^3 + 4s + 80 = 0$, and **Q.5** (ii) $s^3 + 7s^2 + 25s + 39 = 0$ has all roots with real parts more negative 1.

 $G(s) = \frac{5(4s+1)}{(s^2+2s)(4s^2+8s+16)}, \text{ state the type of the system and identify its poles}$ b. For the unity feedback system: and zeros. Determine the steady state errors for a unit step input, a unit ramp input and an acceleration input, $t^2/2$. If this system is required to follow a parabolic input signal, will it perform satisfactorily?

- a. Draw a typical passive electrical network and the pole-zero plot, and write the transfer function for each type of **Q.6** compensator: lead, lag and lag-lead. Explain the need for compensation networks in control systems. **(8)**
 - b. Sketch the root-locus for a unity feedback system having forward path transfer function as $G(s) = \frac{K}{S} \left(\frac{2-S}{2+S} \right)$ and find the value of K where Cfind the value of K when the root-locus cuts the j@-axis.
- $G(s) = \frac{\omega_n^2}{s(s+2\varsigma\omega_n)}, H(s) = 1$ For a standard second order system $F(s) = \frac{\omega_n^2}{s(s+2\varsigma\omega_n)}, H(s) = 1$ show that the phase-margin is given by **Q.7** $\varphi_m = \tan^{-1}(\frac{2\varsigma}{\sqrt{\sqrt{4\varsigma^4+1}-2\varsigma^2}}) \text{ . Calculate} \\ \varphi_m \text{ for } \varsigma = 0.5 \text{ and } \frac{1}{\sqrt{2}} \text{ . What will be the approximation for } \varphi_m \text{ for } \varphi_m \text{$ low values of damping ratio 5?
 - Sketch the Nyquist plot and determine the stability of the system $G(s)H(s) = \frac{5}{s(s+1)(s-2)}.$
- a. The transfer function of a lead compensator is given by $G_c(s) = \frac{\tau s + 1}{\alpha \tau s + 1}$, where $\alpha < 1, \tau > 0$. Find the magnitude **Q.8** of $G_c(j\omega)$ at the frequency ω_m of maximum phase lead ϕ_m and express $\sin \phi_m$ in terms of α . If $\tau = 0.36$ and $\alpha \tau = 0.06$, find $|G_c(j\omega_m)|$
 - Obtain the open-loop transfer function of the system whose Bode magnitude plot is shown in Fig. 10. (8)

12/26/11 Code: A-20



Q.9 a. Consider the circuit of Fig. 11 with an ideal op-amp. Derive the transfer function in terms of: (i) $Z_1(s)$ and $Z_2(s)$, (ii) circuit elements. Show that the circuit process the input signal by "proportional + integral + derivative" action.

(8)

b. What is a robust control system? List the model uncertainty factors that should be considered to make the system design robust. (8)