Code: A-11 Subject: CONTROL ENGINEERING Time: 3 Hours June 2006 Max.

Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or best alternative in the following:

(2x10)

- For type-2 system, the steady-state error due to ramp input is equal to
 - (A) zero.

(B) finite constant.

(C) infinite.

- **(D)** one.
- b. The Nyquist plot of a system passes through (-1, jo) point, the phase margin of the system is
 - (A) greater than zero.

(B) zero.

(C) less than zero.

- **(D)** undefined.
- c. The transfer function of a phase-lead compensator is given by $G_c(s) = \frac{1 + aTs}{1 + Ts}$, where a > 1 and T> 0. The maximum phase-shift provided by such a compensator is
 - (A) $\tan^{-1} \left(\frac{a-1}{a+1} \right)$. (C) $\cos^{-1} \left(\frac{a-1}{a+1} \right)$

(B) $\tan^{-1}\left(\frac{a+1}{a-1}\right)$.

 $\sin^{-1}\left(\frac{a-1}{a+1}\right).$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, \text{ its eigenvalues are:}$$

d. Given the matrix

(B) two are negative

(C) one is negative

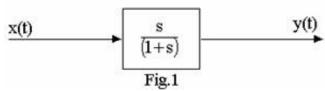
(A) all negative and different

- (D) all are negative with two of them being equal
- The impulse response of a second-order under-damped system starting from rest is given by $c(t) = 12.5e^{-6t} \sin 8t$. The natural frequency and the damping factor of the system are respectively
- (A) 10 and 0.6

(B) 10 and 0.8

(C) 8 and 0.6

- **(D)** 8 and 0.8
- f. In the system in Fig.1, $x(t) = \sin t$. In the steady-state, the response y (t) will be



(A) $\frac{1}{\sqrt{2}} \sin (t - 45^\circ)$

(B) $\frac{1}{\sqrt{2}} \sin (t + 45^\circ)$

 $(C) \frac{1}{\sqrt{2}} e^{-t} \sin t$

- **(D)** sin t − cos t
- g. The steady-state error co-efficient for a system are given by $k_p = \infty$, $k_v = \infty$ and $k_a =$ finite constant. The system is a
- (A) type 0 system.

(B) type 1 system.

(C) type 2 system.

- **(D)** type 3 system.
- h. The input to a controller in a control system is
 - (A) sensed signal.

- **(B)** error signal.
- **(C)** desired variable value.
- (D) servo signal.
- i. The rotor terminals of a synchro-transmitter is energised with
 - (A) $1-\phi$ a.c. voltage.
- **(B)** 2ϕ a.c. voltage.
- (C) 3ϕ a.c. voltage.
- (D) D.C. voltage.
- j. The transfer function of a first-order electrical system is $G(s) = \frac{10}{1+2s}$. The time-constant of the system is
 - (A) 10 seconds.

(B) $\frac{1}{10}$ second.

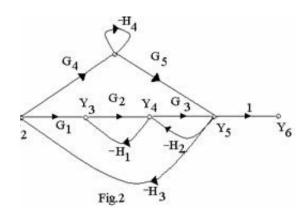
(C) 2 seconds.

(D) $\frac{1}{2}$ second

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 Find the gains $\frac{Y_5}{Y_1}$ and $\frac{Y_2}{Y_1}$ for the signal-flow graph shown in Fig.2. (16)

12/26/11 Code: A-20



Q.3 a. Show that the root loci for a control system with

$$G(s) = \frac{K(s^2 + 6s + 10)}{(s^2 + 2s + 10)}, H(s) = 1$$
 are arcs of the circle centered at the origin with radius equal to $\sqrt{10}$. (14)

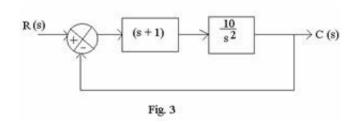
- b. Examine the stability of the system with K = 1. (2)
- Q.4 a. The loop transfer function for a control system is given as $G(s)H(s) = \frac{K}{(1+s)(1+10s)(1+20s)}.$ Determine the steady-state error for a unit-step input, a unit-ramp input and a parabolic input.

 (9)
 - b. Examine the stability of the system with K = 1? (7)
- The specifications of a second-order control system with the closed-loop transfer function $\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$ are that the maximum overshoot must not exceed 10 percent and the rise time must be less than 0.1 second. Find the corresponding limiting values of ^{M}p and bandwidth analytically. (16)
- The loop transfer function G(s) H(s) of a single-loop feedback control system is given as $G(s)H(s) = \frac{20}{s(1+0.1s)(1+0.5s)}.$ Sketch the Nyquist plot of $G(j\omega)H(j\omega)$ for $\omega = 0$ to $\omega = \infty$. Determine the stability of the closed-loop system. (16)
- Q.7 a. The characteristic equation of a control system is given as

12/26/11 Code: A-20

$$s^4 + Ks^3 + s^2 + s + 1 = 0$$
. Determine the range of K for stability.

- b. Prove that for BIBO stability, the roots of the characteristic equation must lie in the left-half of splane. (8)
- Q.8 Find the unit-step response for the control system shown in Fig.3. (16)



- **Q.9** Write short notes on any **TWO** of the following:
 - (i) P-I-D Controller.
 - (ii) D.C. servo-motor.
 - (iii) Phase-lead compensation.

(16)

(8)