
IGNOU4U.BLOGSPOT.COM 
 

  Page 1  
  

IGNOU MCA MCS-042 Solved Assignment 2011 
 

Question 1(a) Hidden Station Problem   Figure 14.10 shows an example of the hidden station 
problem. Station B has a transmission range shown by the left oval (sphere in space); 
every station in this range can hear any signal transmitted by station B. Station C has 

 

a transmission range shown by the right oval (sphere in space); every station located 
in this range can hear any signal transmitted by C. Station C is outside the transmission 
range of B; likewise, station B is outside the transmission range of C. Station A, 
however, is in the area covered by both B and C; it can hear any signal transmitted by 
B or C. 
 
Assume that station B is sending data to station A. In the middle of this transmission, 
station C also has data to send to station A. However, station C is out of B’s range and 
transmissions from B cannot reach C. Therefore C thinks the medium is free. 

Exposed Station Problem   Now consider a situation that is the inverse of the previous 
one: the exposed station problem. In this problem a station refrains from using a 
channel when it is, in fact, available. In Figure 14.12, station A is transmitting to station B. 
Station C has some data to send to station D, which can be sent without interfering 
with the transmission from A to B. However, station C is exposed to transmission from 
A; it hears what A is sending and thus refrains from sending. In other words, C is too 
onservative and wastes the capacity of the channel. 



IGNOU4U.BLOGSPOT.COM 
 

  Page 2  
  

 

The handshaking messages RTS and CTS cannot help in this case, despite what you 
might think. Station C hears the RTS from A, but does not hear the CTS from B. Station C, 
after hearing the RTS from A, can wait for a time so that the CTS from B reaches A; it then 
sends an RTS to D to show that it needs to communicate with D. Both stations B and A 
may hear this RTS, but station A is in the sending state, not the receiving state. Station B, 
however, responds with a CTS. The problem is here. If station A has started sending its 
data, station C cannot hear the CTS from station D because of the collision; it cannot send 
its data to D. It remains exposed until A finishes sending its data as Figure 14.13 shows. 

 

 Question 1(b) 

The ALOHA Protocol 

In the seventies, the ALOHA system was proposed 
by Norman Abramson as an effective solution to 
provide for wireless access to computer systems. 
The ALOHA-net at the University of Hawaii 



IGNOU4U.BLOGSPOT.COM 
 

  Page 3  
  

employed fixed transmitters at islands located at ranges of several tens of kilometers. The 
main advantage of the ALOHA random access scheme was simplicity. Terminals can 
transmit their data regardless of the activity of other terminals. If a message is successful 
the base station sends an acknowledgement over a feedback channel. If the terminal does 
not received an acknowledgement, the terminal retransmits the message after waiting a 
random time. The delay is mainly determined by the probability that a packet is not 
received (because of interference from another transmission, called a "collision") and the 
average value of the random waiting time before a retransmission is made.  

Collision Resolution 

Later studies revealed that, for an infinite population of users and under certain channel 
conditions, the ALOHA system is unstable. Packets lost in a collision are retransmitted, 
but the retransmission again experiences a collision. This may set off an avalanche of 
retransmission attempts. Almost surely, the "backlog", i.e., the number of previously 
unsuccessful packets that need to be retransmitted, grows beyond any finite bound. One 
method to mitigate instability is to dynamically adapt the random waiting times of all 
terminals if the base station notices that many collisions occur. Examples of methods to 
ensure stability are Dynamic Frame Length (DFL) ALOHA, by Frits Schoute, or the 
Stack Algorithm by Boris Tsybakov et al. DFL uses a centralized control, mastered by 
the base station, while the stack algorithm is a decentralized method. 

ALOHA in Mobile Radio Nets 

The ALOHA concept is very commonly used in modern wireless communication 
systems. The call set-up procedure of almost any (analog or digital) cellular telephone 
system uses some kind of ALOHA random access. But the performance differs from 
what one would expect in a wireline network. 

In a radio channel, packets may be lost because of signal fading even if no contending 
other signal is present. On the other hand, packets may be received successfully despite 
interference from competing terminals. This is called `receiver capture'. This effect has a 
significant influence on the throughput.  

Optimum frequency reuse for ALOHA Random Access networks differs from frequency 
reuse for telephony, because the performance criteria differ (throughput / delay versus 
outage probability, respectively). The best reuse pattern for an ALOHA system is to use 
the same frequency in all cells. 



IGNOU4U.BLOGSPOT.COM 
 

  Page 4  
  

The ALOHA Principle 

 
Figure: Description of terminal behavior in ALOHA random access network  

In unslotted ALOHA, a transmission may start at any time. In slotted ALOHA the time 
axis is divided to slots. All terminals are assumed to know the times at which a new slot 
begins. Packets may only be transmitted at the beginning of a new slot. Slotted ALOHA 
has significantly better throughput than unslotted ALOHA. 

Example: GSM call set-up 

If the transmitter-to-receiver propagation time is large and unknown, the slot time must 
be equal to the packet length plus a sufficiently large guard time. In the call set-up of 
GSM, random access packets are substantially shorter than normal telephone speech 
blocks: During call set-up the propagation time is still unknown because the subscriber 
can be anywhere in the cell. During the call, the propagation times are measured and the 
terminal transmitter will compensate for it, by sending all blocks a bit in advance. A 
closed-loop control circuit, sending adaptive timing advance/delay feedback information, 
is used to ensure that the timing remains correct even if the subscribers moves in the cell. 

Throughput of ALOHA Networks 
To express the throughput of the ALOHA random access scheme, it is often assumed that 
message transmission attempts occur according to a Poisson process with rate G attempts 
per slot. For channels in which a transmission is successful if and and only if in that slot 
only a single packet transmission is present, the throughput of successful messages is 
equal to  

• The probability of having just one message: S = G exp{-G}, 
or equivalently,  

• The attempted traffic G multiplied by the probability exp{-G} that no interfering 
message is present  

Both arguments yield the well-known result for the throughput of slotted ALOHA:  



IGNOU4U.BLOGSPOT.COM 
 

  Page 5  
  

      S = G  exp{-G} 
For unslotted ALOHA without capture, a test packet is destroyed by any overlapping 
transmission starting in the time window that  

• starts one packet time before the transmission of the test packet and  
• closes at the end of the transmission of the test packet.  

Hence, packets transmitted over an unslotted ALOHA channel see on average twice as 
many interfering packets as in slotted ALOHA. In fact  
      S = G  exp{-2 G} 
Both unslotted and slotted ALOHA exhibit the typical behaviour that  

• at low traffic (small G), S is approximately equal to G  
• at high traffic loads (large G), S decreases to zero. Almost all packets are lost in 

collisions.  
• one throughput value S corresponds to two values of G. The curves misleading 

suggest that one G would be stable while the other is unstable. For systems 
without capture it turns out, however, that the ALOHA system with a fixed 
retransmission procedure, independent of the history of the network, is always 
unstable.  

ALOHA in Mobile Radio Nets 
In a radio channel, packets may be received successfully despite interference from 
competing terminals. This is called `receiver capture'. The larger the differences in 
received signal power, the more likely it is that one signal is sufficiently strong to capture 
the receiver  

The throughput becomes G times the probability that a particular (a priori chosen) packet 
is sufficiently stronger than the sum of all interfering packets.  

 

Figure: Throughput S of Slotted ALOHA network (in packet per time slot) versus the attempted traffic G.  



IGNOU4U.BLOGSPOT.COM 
 

  Page 6  
  

• Without capture; any collision destroys all packets involved  
• With Capture (receiver threshold is 4)  

o a: Rayleigh fading only  
o c: Shadowing and Rayleigh fading  
o e: Near far effect and Rayleigh fading, Uniform distribution of terminal is a circular cell 

around the receiver.  
o b,d: Some other capture models  

Note that some capture models do not predict that S reduces to zero for large G.  

 

 

Slotted ALOHA 

 
 
Slotted ALOHA protocol. Boxes indicate frames. Shaded boxes indicate frames which 
are in the same slots. 

An improvement to the original ALOHA protocol was "Slotted ALOHA", which 
introduced discrete timeslots and increased the maximum throughput. A station can send 
only at the beginning of a timeslot, and thus collisions are reduced. In this case, we only 
need to worry about the transmission-attempts within 1 frame-time and not 2 consecutive 
frame-times, since collisions can only occur during each timeslot. Thus, the probability of 
there being zero transmission-attempts in a single timeslot is: 

Probslotted = e − G 

the probability of k packets is: 

Probslottedk = e − G(1 − e − G)k − 1 

The throughput is: 

Sslotted = Ge − G 



IGNOU4U.BLOGSPOT.COM 
 

  Page 7  
  

The maximum throughput is 1/e frames per frame-time (reached when G = 1), which is 
approximately 0.368 frames per frame-time, or 36.8%. 

Slotted ALOHA is used in low-data-rate tactical satellite communications networks by 
military forces, in subscriber-based satellite communications networks, mobile telephony 
call setup, and in the contactless RFID technologies 

Question 2(a) The leaky bucket is an algorithm used in packet switched computer 
networks and telecommunications networks to check that data transmissions conform to 
defined limits on bandwidth and burstiness (a measure of the unevenness or variations in 
the traffic flow). The leaky bucket algorithm is also used in leaky bucket counters, e.g. to 
detect when the average or peak rate of random or stochastic events or stochastic 
processes exceed defined limits. 

The Leaky Bucket Algorithm is based on an analogy of a bucket (figure 1) that has a hole 
in the bottom through which any water it contains will leak away at a constant rate, until 
or unless it is empty. Water can be added intermittently, i.e. in bursts, but if too much is 
added at once, or it is added at too high an average rate, the water will exceed the 
capacity of the bucket, which will overflow. 

 the analogue of the bucket is a counter or variable, separate from the flow of traffic, and 
is used only to check that traffic conforms to the limits, i.e. the analogue of the water is 
brought to the bucket by the traffic and added to it so that the level of water in the bucket 
indicates conformance to the rate and burstiness limits. This version is referred to here as 
the leaky bucket as a meter. In the second version [2], the traffic passes through a queue 
that is the analogue of the bucket, i.e. the traffic is the analogue of the water passing 
through the bucket. This version is referred to here as the leaky bucket as a queue. The 
leaky bucket as a meter is equivalent to (a mirror image of) the token bucket algorithm, 
and given the same parameters will see the same traffic as conforming or nonconforming. 
The leaky bucket as a queue can be seen as a special case of the leaky bucket as a meter  

The Leaky Bucket Algorithm as a Meter 

Jonathan S. Turner is credited  with the original description of the leaky bucket algorithm 
and describes it as follows: “A counter associated with each user transmitting on a 
connection is incremented whenever the user sends a packet and is decremented 
periodically. If the counter exceeds a threshold upon being incremented, the network 
discards the packet. The user specifies the rate at which the counter is decremented (this 
determines the average bandwidth) and the value of the threshold (a measure of 
burstiness)” [1]. The bucket (analogous to the counter) is in this case used as a meter to 
test the conformance of packets [note 1], rather than as a queue to directly control them. 

Another version of what is essentially the same meter version of the algorithm, the 
Generic Cell Rate Algorithm is described by the ITU-T in recommendation I.371 [4] and 
in the ATM Forum’s UNI Specification [3]. The description, in which the term cell is 
equivalent to packet in Turner's description [1], is given by the ITU-T as follows: “The 



IGNOU4U.BLOGSPOT.COM 
 

  Page 8  
  

continuous-state leaky bucket can be viewed as a finite capacity bucket whose real-
valued content drains out at a continuous rate of 1 unit of content per time unit and whose 
content is increased by the increment T for each conforming cell... If at a cell arrival the 
content of the bucket is less than or equal to the limit value τ, then the cell is conforming; 
otherwise, the cell is non-conforming. The capacity of the bucket (the upper bound of the 
counter) is (T + τ)” [4]. 

 
 
Figure 2: Traffic policing with a leaky bucket as a meter 

David E. McDyson and Darrel L. Spohn provide a commentary on the description given 
by the ITU-T/ATM Forum. In this they state “In the leaky bucket analogy, the [ATM] 
cells do not actually flow through the bucket; only the check for conforming admission 
does” [5]. However, uncommonly in the descriptions in the literature, McDyson and 
Spohn also refer to the leaky bucket algorithm as a queue, going on “Note that one 
implementation of traffic shaping is to actually have the cells flow through the bucket”  

In describing the operation of the ITU-T's version of the algorithm, McDyson and Spohn 
invoke a “notion commonly employed in queueing theory of a fictional ‘gremlin’” [5]. 
This gremlin inspects the level in the bucket and takes action if the level is above the 
limit value τ: in policing (figure 2), it pulls open a trap door, which causes the packet to 
be dropped and stops its water from entering the bucket; in shaping (figure 3), it pushes 
up a flap, which delays the packet and prevents it from delivering its water, until the 
water level in the bucket falls below τ. 

The difference between the descriptions given by Turner and the ITU-T/ATM Forum is 
that Turner's is specific to traffic policing, whereas the ITU-T/ATM Forum's is applicable 
to both traffic policing and traffic shaping. Also, Turner does not state that the contents of 
the counter should only be affected by conforming packets, and should only be 
incremented when this would not cause it to exceed the threshold, i.e. Turner does not 



IGNOU4U.BLOGSPOT.COM 
 

  Page 9  
  

explicitly state that the bucket’s capacity or counter's maximum value is finite. To make 
Turner’s description clearly aligned with ITU-T, the statement “If the counter exceeds a 
threshold upon being incremented, the network discards the packet” would have to be 
changed to something like “If the counter would exceed a threshold upon being 
incremented, the network discards the packet and the counter is not incremented”. 

 
 
Figure 3: Traffic shaping with a leaky bucket as a meter 

In fairness, the description given by Turner is in terms of a traffic policing function, 
where overzealousness in limiting a connection containing nonconforming packets may 
not be an issue. Indeed, in some contexts, such as Variable bitrate (VBR) transmissions, 
the loss of any one packet may corrupt the entirety of a higher layer message, e.g. an OSI 
Network Layer PDU. In which case, discarding all the following packets of that 
corrupted PDU sheds an unnecessary network load. However, it would be entirely 
unacceptable in traffic shaping for a packet that fails the conformance test to affect how 
long before conformance can next occur, i.e. if the act of testing would change how long 
the packet has to wait. 

Neither Turner nor the ITU-T addresses the issue of variable length packets. To be fair 
again, the description according to the ITU-T is for ATM cells, which are fixed length 
packets, and Turner does not specifically exclude variable length packets. In both cases, 
if the amount by which the bucket content or counter is incremented for a conforming 
packet is proportional to the packet length, they will both account for the length and 
allow the algorithm to limit the bandwidth of the traffic explicitly rather than limiting the 
packet rate. 

Concept of Operation 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
10 

 
  

A description of the concept of operation of the Leaky Bucket Algorithm as a meter that 
can be used in either traffic policing or traffic shaping, may be stated as follows: 

• A fixed capacity bucket, associated with each virtual connection or user, 
leaks at a fixed rate.  

• If the bucket is empty, it stops leaking.  

• For a packet to conform, it has to be possible to add a specific amount of 
water to the bucket: The specific amount added by a conforming packet 
can be the same for all packets, or can be proportional to the length of the 
packet.  

• If this amount of water would cause the bucket to exceed its capacity then 
the packet does not conform and the water in the bucket is left unchanged.  

Uses 

The leaky bucket as a meter can be used in either traffic shaping or traffic policing. For 
example, in ATM networks, in the form of the Generic Cell Rate Algorithm, it is used to 
compare the bandwidth and burstiness of traffic on a Virtual Channel or Virtual Path 
against the specified limits. In traffic policing, nonconforming cells may be discarded 
(dropped) or may be reduced in priority (for downstream traffic management functions to 
drop if there is congestion). In traffic shaping, cells are delayed until they conform. 
Traffic policing and traffic shaping are commonly used in UPC/NPC to protect the 
network against excess or excessively bursty traffic, see bandwidth management and 
congestion avoidance. Traffic shaping is commonly used in the network interfaces in 
hosts to prevent transmissions being discarded by traffic management functions in the 
network. 

 

Parameters 

In the case of the leaky bucket algorithm as a meter, the limits on the traffic can be a 
bandwidth and a burstiness of the output The bandwidth limit and burstiness limit for the 
connection may be specified in a traffic contract. A bandwidth limit may be specified as a 
packet or frame rate, a byte or bit rate, or as an emission interval between the packets. A 
limit on burstiness may be specified as a jitter or delay variation tolerance, or as a 
maximum burst size (MBS). 

Multiple sets of contract parameters can be applied concurrently to a connection using 
multiple instances of the leaky bucket algorithm, each of which may take a bandwidth 
and a burstiness limit: see Dual Leaky Bucket Controller. 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
11 

 
  

Emission Interval 

The rate at which the bucket leaks determines the bandwidth limit, which is referred to as 
the average rate by Turner [1] and the inverse of which is referred to as the emission 
interval by the ITU-T. It is easiest to explain what this interval is where packets have a 
fixed length. Hence, the first part of this description assumes this, and the implications of 
variable packet lengths are considered separately. 

Consider a bucket that is exactly filled to the top by preceding traffic, i.e. when the 
maximum permitted burstiness has already occurred. The minimum interval before the 
next packet can conform is then the time it takes for the bucket to leak exactly the amount 
of water delivered by a packet, and if a packet is tested and conforms at that time, this 
will exactly fill the bucket once more. Thus, once the bucket is filled, the maximum rate 
that packets can conform is with this interval between each packet. 

For variable length packets, where the amount added to the bucket is proportional to the 
packet length, the maximum rate at which they can conform varies according to their 
length: the amount that the bucket must have leaked from full for a packet to conform is 
the amount the packet will add, and if this is proportional to the packet length, so is the 
interval between it and the preceding packet that filled the bucket. Hence, it is not 
possible to specify a specific emission interval for variable length packets, and the 
bandwidth limit has to be specified explicitly, in bits or bytes per second. 

Delay Variation Tolerance 

It is easiest to explain what this tolerance is where packets have a fixed length. Hence, the 
first part of this description assumes this, and the implications of variable packet lengths 
are considered separately. The ITU-T define a limit value, τ that is T less than the 
capacity of the bucket. This limit values specifies how much earlier a packet can arrive 
than it would normally be expected if the packets were arriving with exactly the emission 
interval between them. 

Imagine the following situation: A bucket leaks at 1 unit of water per second, so the limit 
value, τ and the amount of water added by a packet, T, are effectively in units of seconds. 
This bucket starts off empty, so the first packet to arrive must conform. The bucket then 
becomes exactly full after a number of conforming packets, N, have arrived in the 
minimum possible time to conform. For the last (Nth) packet to conform, the bucket must 
have leaked enough of the water from the preceding N – 1 packets ((N – 1) * T seconds 
worth) for it to be exactly at the limit value τ at this time. Hence, the water leaked is (N– 
1)T – τ, which because the leak is one unit per second, took exactly (N– 1)T – τ seconds 
to leak. Thus the shortest time in which all N packets can arrive and conform is (N– 1)T – 
τ seconds, which is exactly τ less than the time it would have taken if the packets had 
been arriving at exactly the emission interval. 

Since the limit value τ defines how much earlier a packet can arrive than would be 
expected, it is the limit on the difference between the maximum and minimum delays 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
12 

 
  

from the source (assuming the packets are generated with no jitter) to the point where the 
conformance test is being made. Hence, the use of the term Cell Delay Variation 
tolerance (CDVt) for this parameter in ATM. 

As an example, a possible source of delay variation is where a number of connections 
(streams of packets) are multiplexed together at the output of a switch. Assuming that the 
sum of the bandwidths of these connections is less than that of the output, all of the 
packets that arrive can be transmitted, eventually. However, if their arrivals are 
independent, e.g. because they arrive at different inputs of the switch, then several may 
arrive at or nearly at the same time. Since the output can only transmit one packet at a 
time, the others must be queued in a buffer until it is their turn to be transmitted. This 
buffer then introduces an additional delay between a packet arriving at an input and being 
transmitted by the output, and this delay varies, depending on how many other packets 
are already queued in the buffer. A similar situation can occur at the output of a host (in 
the NIC) when multiple packets have the same or similar release times, and this delay can 
usually be modelled as a delay in a virtual output buffer. 

For variable length packets, where the amount of water added by a given packet is 
proportional to its length, τ can’t be seen as a limit on how full the bucket can be, as this 
varies depending on the packet size. However, the time it takes to drain from this level to 
empty is still how much earlier a packet can arrive than is expected, when packets are 
transmitted at the bandwidth limit. Thus, it is still the maximum variation in transfer 
delay to the point where the conformance test is being applied that can be tolerated, and 
thus the tolerance on maximum delay variation. 

Maximum Burst Size 

The limit value or delay variation tolerance also controls how many packets can arrive 
back-to-back at the physical layer line rate, i.e. in a burst. Hence it is possible to specify 
the burstiness limit as an MBS and derive the limit value τ from this or to specify it as a 
jitter/delay variation tolerance, and derive the MBS from this. 

If the limit value is large enough, then several packets can arrive back-to-back and still 
conform: if the bucket starts from empty, the first packet to arrive will add T, but if, by 
the time the next packet arrives, the contents is below τ, this will also conform. Assuming 
that each packet takes δ to arrive at the line rate, then if τ (expressed as the time it takes 
the bucket to empty from the limit value) is equal to or greater than 'the emission interval 
less the minimum interarrival time, T – δ, the second packet will conform even if it 
arrives back-to-back with the first. Similarly, if τ is equal to or greater than (T – δ) x 2, 
then 3 packets can arrive back-to-back, etc. 

The maximum size of this burst, M, can be calculated from the emission interval, T; the 
maximum jitter tolerance, τ; and the time taken to transmit/receive a packet, δ, as follows  

Equally, the minimum value of jitter tolerance τ that gives a specific MBS can be 
calculated from the MBS as follows  



IGNOU4U.BLOGSPOT.COM 
 

  Page 
13 

 
  

For variable length packets, the maximum burst size will depend on the lengths of the 
packets in the burst and there is no single value for the maximum burst size. However, it 
is possible to specify the total burst length in bytes, from the byte rate of the input stream, 
the equivalent byte rate of the leak, and the bucket depth. 

Token Bucket Algorithm 

The leaky bucket algorithm is sometimes contrasted with the token bucket algorithm. 
However, the above concept of operation for the leaky bucket as a meter may be directly 
compared with the token bucket algorithm, the description of which is given in that 
article as the following: 

• A token is added to the bucket every 1/r seconds.  

• The bucket can hold at the most b tokens. If a token arrives when the 
bucket is full, it is discarded.  

• When a packet (network layer PDU) [sic] [note 1] of "n" bytes arrives, n 
tokens are removed from the bucket, and the packet is sent to the network.  

• If fewer than n tokens are available, no tokens are removed from the 
bucket, and the packet is considered to be non-conformant.  

This can be compared with the concept of operation, repeated from above: 

• A fixed capacity bucket, associated with each virtual connection or user, 
leaks at a fixed rate.  

• If the bucket is empty, it stops leaking.  

• For a packet to conform, it has to be possible to add a specific amount of 
water to the bucket: The specific amount added by a conforming packet 
can be the same for all packets, or can be proportional to the length of the 
packet.  

• If this amount of water would cause the bucket to exceed its capacity then 
the packet does not conform and the water in the bucket is left unchanged.  

As can be seen, these two descriptions are essentially mirror images of one another: one 
adds something to the bucket on a regular basis and takes something away for 
conforming packets down to a limit of zero; the other takes away regularly and adds for 
conforming packets up to a limit of the bucket's capacity. It would also be perfectly 
possible to describe the process in terms of adding tokens or subtracting water for 
conforming packets as long as the regular process complements this, at which point it 
would become impossible to tell which was which: is an implementation that removes 
tokens regularly and adds tokens for a conforming packet an implementation of the leaky 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
14 

 
  

bucket or of the token bucket? In fact it is both, as these are the same basic algorithm 
described differently. This explains why, given equivalent parameters, the two algorithms 
will see exactly the same packets as conforming or nonconforming. The differences in the 
properties and performance of implementations of the leaky and token bucket algorithms 
thus result entirely form the differences in the implementations, i.e. they do not stem 
from differences in the underling algorithms. 

The points to note are that the leaky bucket algorithm, when used as a meter, can allow a 
conforming output packet stream with jitter or burstiness, can be used in traffic policing 
as well as shaping, and can be implemented for variable length packets. 

Question 2 b) 
Count-To-Infinity Problem  

Followed illustration shows an imagined network and denotes the distances from 
router A to every other router. Until now every thing works fine. 
 

 
 
The illustration shows that link (A, B) is broken. Router B observed it, but in his 
routing table he sees, that router C has a route to A with 2 hops.  
The problem is, that router B doesn't know that C has router B as successor in 
his routing table on the route to A.  
That occurs followed count-to-infinity problem. B actualizes his routing table and 
takes the route to A over router C.  
In the next picture, we can see the new distances to A. In C's routing the route 
to A contains router B as next hop router, so if B has increase his costs to A, C is 
forced to do so. Router C increases his cost to A about B + 1 = 4.  
Now we see the consequence of the distributed Bellman-Ford protocol: Because 
router B takes the path over C to A, he reactualizes his routing table and so on! 
At the end this problem is going to immobilize the whole network. 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
15 

 
  

 

 

Question 2 c) 

A link-state routing protocol is one of the two main classes of routing protocols used in 
packet switching networks for computer communications, the other major class being the 
distance-vector routing protocol. Examples of link-state routing protocols include OSPF 
and IS-IS. 

The link-state protocol is performed by every switching node in the network (i.e. nodes 
that are prepared to forward packets; in the Internet, these are called routers). The basic 
concept of link-state routing is that every node constructs a map of the connectivity to the 
network, in the form of a graph, showing which nodes are connected to which other 
nodes. Each node then independently calculates the next best logical path from it to every 
possible destination in the network. The collection of best paths will then form the node's 
routing table. 

Routed protocols are transported by routing protocols across an internetwork. In general, routed 
protocols in this context also are referred to as network protocols. These network protocols perform a 
variety of functions required for communication between user applications in source and destination 
devices, and these functions can differ widely among protocol suites. Network protocols occur at the 
upper five layers of the OSI reference model: the network layer, the transport layer, the session layer, 
the presentation layer, and the application layer.  

Confusion about the terms routed protocol and routing protocol is common. Routed protocols are 
protocols that are routed over an internetwork. Examples of such protocols are the Internet Protocol 
(IP), DECnet, AppleTalk, Novell NetWare, OSI, Banyan VINES, and Xerox Network System (XNS). 
Routing protocols, on the other hand, are protocols that implement routing algorithms. Put simply, 
routing protocols are used by intermediate systems to build tables used in determining path selection 
of routed protocols. Examples of these protocols include Interior Gateway Routing Protocol (IGRP), 
Enhanced Interior Gateway Routing Protocol (Enhanced IGRP), Open Shortest Path First (OSPF), 
Exterior Gateway Protocol (EGP), Border Gateway Protocol (BGP), Intermediate System-to-
Intermediate System (IS-IS),  

Question 3 i) A subnet (short for "subnetwork") is an identifiably separate part of an 
organization's network. Typically, a subnet may represent all the machines at one 
geographic location, in one building, or on the same local area network (LAN). Having 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
16 

 
  

an organization's network divided into subnets allows it to be connected to the Internet 
with a single shared network address. Without subnets, an organization could get multiple 
connections to the Internet, one for each of its physically separate subnetworks, but this 
would require an unnecessary use of the limited number of network numbers the Internet 
has to assign. It would also require that Internet routing tables on gateways outside the 
organization would need to know about and have to manage routing that could and 
should be handled within an organization.  

The Internet is a collection of networks whose users communicate with each other. Each 
communication carries the address of the source and destination networks and the 
particular machine within the network associated with the user or host computer at each 
end. This address is called the IP address (Internet Protocol address). This 32-bit IP 
address has two parts: one part identifies the network (with the network number) and the 
other part identifies the specific machine or host within the network (with the host 
number). An organization can use some of the bits in the machine or host part of the 
address to identify a specific subnet. Effectively, the IP address then contains three parts: 
the network number, the subnet number, and the machine number.  

The standard procedure for creating and identifying subnets is provided in Internet 
Request for Comments 950.  

The 32-bit IP address is often depicted as a dot address (also called dotted quad notation) 
- that is, four groups (or quads) of decimal numbers separated by periods. Here's an 
example:  

       130.5.5.25 

Each of the decimal numbers represents a string of eight binary digits. Thus, the above IP 
address really is this string of 0s and 1s:  

       10000010.00000101.00000101.00011001 

As you can see, we inserted periods between each eight-digit sequence just as we did for 
the decimal version of the IP address. Obviously, the decimal version of the IP address is 
easier to read and that's the form most commonly used.  

Some portion of the IP address represents the network number or address and some 
portion represents the local machine address (also known as the host number or address). 
IP addresses can be one of several classes, each determining how many bits represent the 
network number and how many represent the host number. The most common class used 
by large organizations (Class B) allows 16 bits for the network number and 16 for the 
host number. Using the above example, here's how the IP address is divided:  

          <--Network address--><--Host address-->  
                     130.5     .          5.25 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
17 

 
  

If you wanted to add subnetting to this address, then some portion (in this example, eight 
bits) of the host address could be used for a subnet address. Thus:  

           <--Network address--><--Subnet address--><--Host address--> 
                      130.5      .       5           .      25 

To simplify this explanation, we've divided the subnet into a neat eight bits but an 
organization could choose some other scheme using only part of the third quad or even 
part of the fourth quad.  

Once a packet has arrived at an organization's gateway or connection point with its 
unique network number, it can be routed within the organization's internal gateways 
using the subnet number. The router knows which bits to look at (and which not to look 
at) by looking at a subnet mask, which is a screen of numbers that tells you which 
numbers to look at underneath. In a binary mask, a "1" over a number says "Look at the 
number underneath"; a "0" says "Don't look." Using a mask saves the router having to 
handle the entire 32 bit address; it can simply look at the bits selected by the mask.  

Subnets 

A. A subnet is a physical segment in a TCP/IP environment that uses IP addresses derived 
from a single network ID. 
B. Each segment uses a different network ID or subnet ID. 
C. Subnetting offers several advantages. 
1. Allows you to mix different technologies such as Ethernet and Token Ring 
2. Allows you to overcome limitations of current technologies, such as number of hosts per 
segment 
3. Allows you to reduce network congestion by redirecting traffic and reducing broadcasts 

Implementing Subnetting 
A. Use these guidelines for determining subnet requirements. 
1. Determine the current and future number of physical segments on your network. 
2. Determine the current and future number of host addresses required for each physical 
segment. 
3. Based on these requirements, define one subnet mask for the entire network, a unique 
subnet ID for each physical segment, and a range of host IDs for each subnet. 
Supernetting 
A. Supernetting borrows bits from the network ID and masks them as the host ID. 
B. Supernetting combines several Class C addresses which each accommodate 254 hosts to 
accommodate larger numbers of hosts. 
C. Classless Inter-Domain Routing (CIDR) is used to collapse multiple Class C addresses 
into one network ID. 
D. Supernetting reduces entries in routing tables. 
 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
18 

 
  

 
QUESTION 4 (I) Segments A segment is a set of extents allocated for a certain logical 
structure. The following table describes the different types of segments. 
Segment Description 
Data 
segment 

Each nonclustered table has a data segment. All table data is stored in the 
extents of the data segment.  

For a partitioned table, each partition has a data segment.  

Each cluster has a data segment. The data of every table in the cluster is 
stored in the cluster's data segment. 

Index 
segment 

Each index has an index segment that stores all of its data.  

For a partitioned index, each partition has an index segment. 
Temporary 
segment 

Temporary segments are created by Oracle when a SQL statement needs a 
temporary work area to complete execution. When the statement finishes 
execution, the extents in the temporary segment are returned to the system 
for future use. 

Rollback 
segment 

If you are operating in automatic undo management mode, then the 
database server manages undo space using tablespaces. Oracle Corporation 
recommends that you use "Automatic Undo Management" management.  

However, if you are operating in manual undo management mode, then 
one or more rollback segments for a database are created by the database 
administrator to temporarily store undo information.  

The information in a rollback segment is used during database recovery: 

• To generate read-consistent database information  

• To roll back uncommitted transactions for users  

 

In this lesson, you will learn how two TCP devices synchronize using three way handshake (3 way 
handshake) and what are the three steps of a TCP three way handshake and how two TCP devices 

synchronize. 

Before the sending device and the receiving device start the exchange of data, both devices need to 
be synchronized. During the TCP initialization process, the sending device and the receiving device 
exchange a few control packets for synchronization purposes. This exchange is known as a three-

way handshake. 

The three-way handshake begins with the initiator sending a TCP segment with the SYN control bit 
flag set. 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
19 

 
  

TCP allows one side to establish a connection. The other side may either accept the connection or 
refuse it. If we consider this from application layer point of view, the side that is establishing the 

connection is the client and the side waiting for a connection is the server. 

TCP identifies two types of OPEN calls: 

Active Open. In an Active Open call a device (client process) using TCP takes the active role and 
initiates the connection by sending a TCP SYN message to start the connection. 

Passive Open A passive OPEN can specify that the device (server process) is waiting for an active 
OPEN from a specific client. It does not generate any TCP message segment. The server processes 

listening for the clients are in Passive Open mode. 

 

 

 

TCP Three-way Handshake  

Step 1. Device A (Client) sends a TCP segment with SYN = 1, ACK = 0, ISN (Initial Sequence 
Number) = 2000. 

The Active Open device (Device A) sends a segment with the SYN flag set to 1, ACK flag set to 0 
and an Initial Sequence Number 2000 (For Example), which marks the beginning of the sequence 
numbers for data that device A will transmit. SYN is short for SYNchronize. SYN flag announces an 

attempt to open a connection. The first byte transmitted to Device B will have the sequence number 
ISN+1. 

Step 2. Device B (Server) receives Device A's TCP segment and returns a TCP segment with SYN = 
1, ACK = 1, ISN = 5000 (Device B's Initial Sequence Number), Acknowledgment Number = 2001 

(2000 + 1, the next sequence number Device B expecting from Device A). 

Step 3. Device A sends a TCP segment to Device B that acknowledges receipt of Device B's ISN, 
With flags set as SYN = 0, ACK = 1, Sequence number = 2001, Acknowledgment number = 5001 

(5000 + 1, the next sequence number Device A expecting from Device B) 

This handshaking technique is referred to as the Three-way handshake or SYN, SYN-ACK, ACK. 

After the three-way handshake, the connection is open and the participant computers start sending 
data using the sequence and acknowledge numbers. 

Transport Layer protocols (TCP and UDP) are responsible for supporting multiple network 
applications at the same instance and these applications can send and receive network data 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
20 

 
  

simultaneously. Transport Layer Protocols are capable of doing this by making use of application 
level addressing, known as port numbers. The data from different applications operating on a 

network device are multiplexed at the sending device using port numbers and demultiplexed at the 
receiving device, again using port numbers.  

 

The two 16 bit fields in the TCP Header, Source port and Destination port identifies the port 
number which the application is listening at the sending device and receiving device. Since port 

number is a 16 bit number, the maximum possible value is 65535 ((2^16)-1). 

The port numbers are divided into three ranges. 

The Well Known Ports are those in the range 0 - 1023. The Well Known Ports are assigned by the 
IANA for major protocols.  

The Registered Ports are those in the range 1024 - 49151.  

The Private Ports are those in the range 49152 - 65535. 

Question 4 (ii) The main task of the Transmission Control Protocol is simple: packaging 
and sending data. Of course, almost every protocol packages and sends data. What 
distinguishes TCP from these protocols is the sliding window mechanism that controls 
the flow of data between devices. This system not only manages the basic data transfer 
process, it is also used to ensure that data is sent reliably, and also to manage the flow of 
data between devices to ensure that data is transferred efficiently without either device 
sending data faster than the other can receive it.To enable TCP to provide the features 
and quality of data transfer that applications require, the protocol had to be enhanced 
beyond the simplified data transfer mechanism we saw in preceding sections. Extra 
“smarts” needed to be given to the protocol to handle potential problems, and changes to 
the basic way that devices send data were implemented to avoid inefficiencies that might 
otherwise have resulted. 

In this section I describe how TCP ensures that devices on a TCP connection 
communicate in a reliable and efficient manner. I begin with an explanation of the basic 
method by which TCP detects lost segments and retransmits them. I discuss some of the 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
21 

 
  

issues associated with TCP's acknowledgment scheme and an optional feature for 
improving its efficiency. I then describe the system by which TCP adjusts how long it 
will wait before deciding that a segment is lost. I discuss how the window size can be 
adjusted to implement flow control, and some of the issues involved in window size 
management. This includes a look at the infamous “Silly Window Syndrome” problem, 
and special heuristics for addressing issues related to small window size that modify the 
basic sliding windows scheme. I conclude with a discussion of TCP's mechanisms for 
handling and avoiding congestion. 

In a connection between a client and a server, the client tells the server the number of 
bytes it is willing to receive at one time from the server; this is the client's receive 
window, which becomes the server's send window. Likewise, the server tells the client 
how many bytes of data it is willing to take from the client at one time; this is the server's 
receive window and the client's send window.  

The use of these windows is demonstrated in the topic discussing TCP's basic data 
transfer and acknowledgment mechanism. However, just as the example in that topic was 
simplified because I didn't show what happens with lost segments, there's another way 
that it doesn't reflect the real world conditions of an actual Internet: the send and receive 
window sizes never changed during the course of communication. 

Impact of Buffer Management on TCP Window Size  

To understand why the window size may fluctuate, we need to understand what it 
represents. The simplest way of considering the window size is that it indicates the size of 
the device's receive buffer for the particular connection. That is, window size represents 
how much data a device can handle from its peer at one time before it is passed to the 
application process. Let's consider the aforementioned example. I said that the server's 
window size was 360. This means the server is willing to take no more than 360 bytes at 
a time from the client. 

When the server receives data from the client, it places it into this buffer. The server must 
then do two distinct things with this data: 

o Acknowledgment: The server must send an acknowledgment back to the client to 
indicate that the data was received.  

o Transfer: The server must process the data, transferring it to the destination 
application process.  

It is critically important that we differentiate between these two activities. Unfortunately, 
the TCP standards don't do a great job in this regard, which makes them very difficult to 
understand. The key point is that in the basic sliding windows system, data is 
acknowledged when received, but not necessarily immediately transferred out of the 
buffer. This means that is possible for the buffer to fill up with received data faster than 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
22 

 
  

the receiving TCP can empty it. When this occurs, the receiving device may need to 
adjust window size to prevent the buffer from being overloaded. 

Question 5 

Data encryption is used pervasively in today’s connected society. The two most basic facets of 
modern day data encryption are data privacy and authentication. As modern society becomes 
more connected, and more information becomes available there is a need for safeguards which 
bring data integrity and data secrecy. In addition, authenticating the source of information gives 
the recipient, with complete certainty that the information came from the original source and 
that it has not been altered from its original state. Both, the needs for information privacy and 
data authentication has motivated cryptography. 
The Xentec X_3DES Triple-DES Cryptoprocessor (Figure 5) supports the Spartan-II FPGA 
family . The features are: 
• Implemented according to the X9.52 standard 
• Implementation based on NIST certified DES core 
• Two independent keys supported 
• Both encryption and decryption supported 
• Encryption and decryption latency is 48 clock cycles and throughput is 16 clock cycles 
• No dead cycles for key loading or mode switching 
• Fully synchronous design 
• Available as a fully functional and synthesizable VHDL or Verilog soft-core 
• Test benches provided 
• Xilinx netlist available 

 

Programmable Logic Devices (PLDs) have always been viewed as being expensive, slower, 
and less feature rich than comparable ASICs. This limited their success in penetrating the 
ASSP market. Bringing programmability and its traditional benefits to a design solution is 
always an expensive proposition and PLDs have traditionally lost the battle to the costoptimized 
custom solution or ASIC. The use of innovative process technologies has leveled this 
playing field. This approach has allowed PLDs to significantly reduce die sizes, and therefore 
lower the cost of the overall solution. This rapid transition in process technology has allowed 



IGNOU4U.BLOGSPOT.COM 
 

  Page 
23 

 
  

PLD vendors to service the needs of today’s ASSP designers. The Spartan-II FPGAs offer 
more than 100,000 system gates at under $10, hence making them the most cost-effective PLD 
solution ever offered. They address low cost and fast time-to-market, but more importantly 
integrate powerful new system-level features that provide an attractive solution for today’s 
system level designer. The associated features include SelectI/O™, Block SelectRAM™, 
Distributed RAM, DLL (delay-locked loop) circuits, clock speeds up to 200 MHz, and aggressive 
power management. 
The extensive features position the Spartan-II family as a low-cost, high-performance 
programmable ASSP alternative and expand the time-to-market advantage that PLDs 
traditionally offer. There are some significant advantages in using the DES/TDES soft-IP in a 
Spartan-II device. 
Performance 
FIPS 46 allows implementation of the cryptographic algorithm in software, firmware, hardware, 
or any combination thereof to enable more flexible, cost-effective implementations. However, a 
hardware implementation runs inherently faster (even by an order of magnitude) than a 
software implementation. The bit data rate is four times the clock rate, i.e., 100 MHz = 
400 Mbps. The hardware implementation of the DES and TDES IP ported on a Spartan-II 
device uses 272 CLBs and provides performance upwards of 100 MHz. Most real-world 
consumer applications such as real-time video require only DES (and not TDES) due to 
performance degradation, because of extra computation. 
The Xilinx Spartan-II FPGA hardware can speed the factorization of large numbers, by setting 
up four memory banks that are accessed simultaneously, and hence offering parallel 
computing. This approach increases execution speeds in repetitive calculations, required for 
sieving. 
NIST approved 
The DES soft IP for Spartan-II FPGAs is NIST approved and meets all government standards. 
The TDES standard is still in the process of being approved by NIST, and is a standard that all 
ASSPs are required to meet. 
Value addition of a reconfigurable fabric 
The Spartan-II family accommodates specification changes that can be easily adopted, in post 
volume production as part of the solution. Conflicting specifications and lack of a clear direction 
create the need for programmable ASSP solutions. The reprogrammable FPGA fabric permits 
the use of DES and TDES as needed, and allows ability to include any specification changes 
made by the government later. It would be nearly impossible and cost-prohibitive for an ASSP 
vendor to cater to all the various specifications. However, at the same time betting on the 
success of one single product may preclude them from being successful in the marketplace. 
These conditions create many opportunities for the Spartan-II family—the industry’s first 
programmable ASSP. Because of the high profit margins involved with these products, 
designers can easily continue using programmable ASSPs in volume production. 
The programmable fabric can also encode and decode with larger and better transformation 
blocks. The key can be changed within the fabric in quick intervals. Additionally if a key is ever 
broken, the Xilinx solution can be reconfigured instantly. Use of reconfigurable devices lets the 
algorithms be changed or swapped entirely, which has become a requirement in some 
multialgorithmic 
cryptographic systems (such as Secure Socket Layer). Hence, AES hardware can 
be designed now, even before the standard is established. 
Most stand-alone ASSPs never behave as expected, due to reasons ranging from bugs in the 
silicon, system integration issues, software drivers, or even user errors. Irrespective of the 
cause, verifying and identifying device problems can be very difficult with ASSPs, but a lot 
easier with programmable ASSPs. Having been built on the fabric of a proven FPGA 
technology and having silicon that is pre-verified and guaranteed to perform, potential problems 
in the Spartan-II family are narrowed down to a software-only issue. Xilinx provides powerful 

===============================================================
============================================================== 


