ELECTRONICS & COMMUNICATION ENGINEERING

ONE MARK QUESTIONS

1. The dependent current source shown in the figure

- (a.) delivers 80W
- (b.) absorbs 80W
- (c.) delivers 40W
- (d.) absorbs 40W
- 2. In the figure, the switch was closed for a long time before opening at t = 0. The voltage Vx at $t = 0^+$ is

- (a.) 25V
- (b.)50V
- (c.) 50V
- (d.)0V
- 3. In the figure, silicon diode is carrying a constant current of 1 mA. When the temperature of the diode is 20°C, V_D is found to be 700 mV. If the temperature rises to 40°C, V_D becomes approximately equal to

- (a.) 740 mV
- (b.)660 mV
- (c.) 680 mV
- (d.)700 mV

www.parikshaguru.com

4. If the transistor in the figure is in saturation, then

- (a.) I_{C} is always equal to $\beta_{\text{dc}}I_{B}$
- (b.) I_C is always equal to $-\beta_{dc}I_B$
- (c.) I_C is greater than or equal to $\beta_{dc}I_B$
- (d.) I_C is less than or equal to $\beta_{dc}I_B$
- 5. In a negative feedback amplifier using voltage-series (i.e. voltage-sampling, series mixing) feedback. (R_i and R_0 denote the input and output resistances respectively)
 - (a.) R_i decreases and R_0 decreases
 - (b.) R_i decreases and R₀ increases
 - (c.) R_i increases and R₀ decreases
 - $(d.)R_i$ increases and R_0 increases
- 6. A 741-type opamp has a gain-bandwidth product of 1 MHz. A non-inverting amplifier using this opamp and having a voltage gain of 20dB will exhibit a -3-dB bandwidth of
 - (a.) 50 KHz
 - (b.) 100 KHz
 - (c.) $\frac{1000}{17}$ KHz
 - (d.) $\frac{1000}{7.07}$ KHz
- 7. Three identical RC-coupled transistor amplifiers are cascaded. If each of the amplifiers has a frequency response as shown in the figure, the overall frequency response is as given in

www.parikshaguru.com

(b.)

(c.)

(d.)

- 8. -bit 2's complement representation of a decimal number is 1000. The number is
 - (a.) + 8
 - (b.)0
 - (c.)-7
 - (d.)-8
- 9. If the input to the digital circuit (in the figure) consisting of a cascade of 20 XOR-gates is X, then the output Y is equal to

- (a.)0
- (b.)1
- (c.) \bar{X}
- (d.)X
- 10. The number of comparators required in a 3-bit comparator type ADC is
 - (a.)2
 - (b.)3
 - (c.)7
 - (d.)8
- 11. Convolution of x(t+5) with impulse function $\delta(t-7)$ is equal to

www.parikshaguru.com

- (a.) x(t 12)
- (b.)x(t+12)
- (c.) x(t-2)
- (d.)x(t+2)
- 12. Which of the following cannot be the Fourier series expansion of a periodic signal?
 - (a.) $x(t)=2\cos t+3\cos 3t$
 - $(b.)x(t)=2\cos\pi t+7\cos t$
 - (c.) x(t) = cost + 0.5
 - $(d.)x(t)=2\cos 1.5\pi t + \sin 3.5\pi t$
- 13. The Fourier transform $F\left\{e^{-l}u(t)\right\}$ is equal to $\frac{1}{1+j2\pi f}$. Therefore, $F\left\{\frac{1}{1+j2\pi t}\right\}$ is
 - $(a.) e^{f} u(f)$
 - $(b.)e^{-f}u(f)$
 - $(c.) e^{f} u(-f)$
 - $(d.)e^{-f}u(-f)$
- 14. A linear phase channel with phase delay T_p and group delay T_g must have
 - (f denotes frequency)
 - (a.) $T_p = T_g = constant$
 - $(b.)T_p \propto f$ and $T_g \propto f$
 - (c.) $T_p = constant$ and $T_g \propto f$
 - $(d.)T_p \propto f$ and $t_g = constant$
- 15. Consider a system with the transfer function $G(s) = \frac{s+6}{Ks^2+s+6}$. Its damping ratio will be 0.5 when the value of k is
 - (a.) 2/6
 - (b.)3
 - (c.) 1/6
 - (d.)6
- 16. Which of the following points is NOT on the root locus of a system with the open-loop transfer function $G(s)H(s) = \frac{k}{s(s+1)(s+3)}$
 - (a.) $s = -j\sqrt{3}$
 - (b.)s = -1.5
 - (c.) s = -3
 - (d.)s ∞

www.parikshaguru.com

- 17. The phase margin of a system with the open-loop transfer function $G(s)H(s) = \frac{(1-s)}{(1+s)(2+s)}$
 - (a.) 0°
 - $(b.)63.4^{\circ}$
 - (c.) 90°
 - (d.)∞
- 18. The transfer function Y(s)/U(s) of a system described by the state equations $\dot{x}(t) = -2x(t) + 2u(t)$ and y(t) = 0.5x(t) is
 - (a.) 0.5/(s-2)
 - (b.) 1/(s-2)
 - (c.) 0.5/(s + 2)
 - (d.) 1/(s+2)
- 19. A 1 MHz sinusoidal carrier is amplitude modulated by a symmetrical square wave of period 1 00µ sec. Which of the following frequencies will NOT be present in the modulated signal?
 - (a.) 990 KHz
 - (b.) 1010 KHz
 - (c.) 1020 KHz
 - (d.) 1030 KHz
- 20. Consider a sample signal $y(t) = 5 \times 10^{-6} x(t) \sum_{n=-\infty}^{+\infty} \delta(t-nT_s)$ where $x(t) = 10\cos(8\pi \times 10^3)t$ and $T_s = 100\mu$ sec. Which y(t) is passed through an ideal low pass filter with a cutoff frequency of 5KHz, the output of the filter is
 - (a.) $5 \times 10^{-6} \cos(8\pi \times 10^{3})t$
 - (b.) $5 \times 10^{-5} \cos(8\pi \times 10^{3}) t$
 - (c.) $5 \times 10^{-1} \cos(8\pi \times 10^3) t$
 - (d.) $10\cos\left(8\pi\times10^3\right)t$
- 21. For a bit-rate of 8 Kbps, the best possible values of the transmitted frequencies in a coherent binary FSK system are
 - (a.) 16 KHz and 20 KHz
 - (b.) 20 KHz and 32 KHz
 - (c.) 20 KHz and 40 KHz
 - (d.) 32 KHz and 40 KHz
- 22. The line-of-sight communication requires the transmit and receive antennas to face each other. If the transmit antenna is vertically polarized, for best reception the receiver antenna should be
 - (a.) horizontally polarized

www.parikshaguru.com

- (b.) vertically polarized
- (c.) at 450 with respect to horizontal polarization
- (d.) at 45° with respect to vertical polarization
- 23. The VSWR can have any value between
 - (a.) 0 and 1
 - (b.)-1 and +1
 - (c.) 0 and ∞
 - (d.) 1 and ∞
- 24. In an impedance Smith chart, a clockwise movement along a constant resistance circle gives rise to
 - (a.) a decrease in the value of reactance
 - (b.) an increase in the value of reactance
 - (c.) no change in the reactance value
 - (d.) no change in the impedance value
- 25. The phase velocity for the TE_{10} -mode in an air-filled rectangular waveguide is
 - (a.) less than c
 - (b.) equal to c
 - (c.) greater than c
 - (d.) none of the above
 - (c is the velocity of plane waves in free space)

TWO MARKS QUESTIONS

26. In the network of the figure, the maximum power is delivered to RL if its value is

- (a.) 16Ω
- (b.) $\frac{40}{3}\Omega$
- $(c.)60\Omega$
- $(d.)20\Omega$
- 27. If the 3-phase balanced source in the figure delivers 1500W at a leading power factor 0.844, then the value of Z_L (in ohm) is approximately

www.parikshaguru.com

- (a.) $90 \angle 32.44^{\circ}$
- (b.) $80 \angle 32.44^{\circ}$
- (c.) $80 \angle -32.44^{\circ}$
- $(d.)90 \angle -32.44^{\circ}$
- 28. An amplifier using an opamp with a slew-rate SR=1 V/µsec has a gain of 40dB. If this amplifier has to faithfully amplify sinusoidal signals from dc to 20 KHz without introducing any slew-rate induced distortion, then the input signal level must not exceed.
 - (a.)795 mV
 - (b.)395 mV
 - (c.)79.5 mV
 - (d.)39.5 mV
- 29. The circuit in the figure employs positive feedback and is intended to generate sinusoidal oscillation.

If at a frequency $f_{0,B}(f) = \Delta \frac{V_f(f)}{V_0(f)} = \frac{1}{6} \angle 0^0$, then to sustain oscillation at this frequency

- (a.) $R_2 = 5R_1$
- $(b.)R_2 = 6R_1$
- (c.) $R_2 = \frac{R_1}{6}$
- (d.) $R_2 = \frac{R_1}{5}$
- 30. A zener diode regulator in the figure is to be designed to meet the specifications: $I_L = 10 \text{mA}$, $V_0 = 10 \text{V}$ and V_{in} varies from 30 V to 50 V. The zener diode has $V_z = 10$ V and I_{zk} (knee current) = 1 mA. For satisfactory operation

www.parikshaguru.com

- (a.) $R \le 1800 \Omega$
- (b.) $2000 \Omega \le R \le 2200 \Omega$
- (c.) $3700 \Omega \le R \le 4000 \Omega$
- (d.) R > 4000 Ω
- 31. The voltage gain $A_V = \frac{v_0}{v_t}$ of the JFET amplifier shown in the figure is

$$I_{DSS} = 10 \text{ mA}$$

$$V_p = -5V$$

(Assume C₁, C₂, and C_s to be very large)

- (a.) + 18
- (b.)-18
- (c.)6+
- (d.)-6
- 32. Consider the following statements in connection with the CMOS inverter in the figure, where both the MOSFETs are of enhancement type and both have a thresh old voltage of 2V.

Statement 1: T_1 conducts when $Vi \ge 0V$.

Statement 2: T_1 is always in saturation when $V_0 = 0V$.

Which of the following is correct?

- (a.) Only Statement 1 is TRUE
- (b.) Only Statement 2 is TRUE
- (c.) Both the statements are TRUE
- (d.)Both the statements are FALSE
- 33. The gates G_1 and G_2 in the figure have propagation delays of 10 nsec and 20 nsec respectively. if the input V_i makes an abrupt change from logic 0 to 1 at time $t = t_o$, then the output waveform V_0 is

y = AB

(a.)

(b.)

(c.)

(d.)

34. The circuit in the figure has two CMOS NOR-gates. This circuit functions as a:

- (a.) flip-flop
- (b.) Schmitt trigger
- (c.) monostable multivibrator
- (d.) astable multivibrator
- 35. If the input X_3 , X_2 , X_1 , X_0 to the ROM in the figure are 8-4-2.1 BCD numbers, then the outputs Y_3 Y_2 Y_1 Y_0 are

www.parikshaguru.com

- (a.) gray code numbers
- (b.)2-4-2-1 BCD numbers
- (c.) excess-3 code numbers
- (d.) none of the above
- 36. The Laplace transform of a continuous-time signal x(t) is $X(s) = \frac{5-s}{s^2-s-2}$. If the Fourier transform of this signal exists, then x(t) is

(a.)
$$e^{2t}u(t)-2e^{-t}u(t)$$

(b.)
$$-e^{2t}u(-t)+2e^{t}u(t)$$

(c.)
$$-e^{2t}u(-t)-2e^{-t}u(t)$$

(d.)
$$e^{2t}u(-t)-2e^{-t}u(t)$$

- 37. If the impulse response of adiscrete-time system is $h[n] = -5^n u[-n-1]$, then the system function H(z) is equal to
 - (a.) $\frac{-z}{z-5}$ and the system is stable
 - (b.) $\frac{z}{z-5}$ and the system is stable
 - (c.) $\frac{-z}{z-5}$ and the system is unstable
 - (d.) $\frac{z}{z-5}$ and the system is unstable
- 38. The system shown in the figure remains stable when

- (a.) k < -1
- (b.)—1 < k < 1

www.parikshaguru.com

- (c.) 1 < k < 3
- (d.)k < --3
- 39. The transfer function of a system is $G(s) = \frac{100}{(s+1)(s+100)}$. For a unit-step input to the system the approximate settling time for 2% criterion is
 - (a.) 100 sec
 - (b.)4 sec
 - (c.) 1 sec
 - (d.)0.01 sec
- 40. The characteristic polynomial of a system is $q(s) = 2s^5 + s^4 + 4s^3 + 2s^2 + 2s + 1$. The system is
 - (a.) Stable
 - (b.) Marginally stable
 - (c.) Unstable
 - (d.) oscillatory
- 41. The system with the open loop transfer function $G(s)H(s) = \frac{1}{s(s^2+s+1)}$ has a gain margin of
 - (a.) 6 dB
 - (b.)0 dB
 - (c.) 3.5 dB
 - (d.)6 dB
- 42. An angle-modulated signal is given by
 - $s(t) = \cos 2\pi (2 \times 10^6 t + 30 \sin 150 t + 40 \cos 150 t)$

The maximum frequency and phase deviations of s(t) are

- (a.) $10.5 \text{ KHz}, 140\pi \text{ rad}$
- (b.) 6 KHz, 80π rad
- (c.) 10.5 KHz, $100\pi \text{ rad}$
- (d.) 7.5 KHz, $100 \pi \text{ rad}$
- 43. In the Figure $m(t) = \frac{2\sin 2\pi t}{t}$, $s(t) = \cos 200\pi t$ and $n(t) = \frac{\sin 199\pi t}{t}$. The output y(t) will be

(a.) $\frac{\sin 2\pi t}{t}$

(b.)
$$\frac{\sin 2\pi t}{t} + \frac{\sin \pi t}{t} \cos 3\pi t$$

$$(c.) \frac{\sin 2\pi t}{t} + \frac{\sin 0.5\pi t}{t} \cos 1.5\pi t$$

$$(d.)\frac{\sin 2\pi t}{t} + \frac{\sin \pi t}{t}\cos 0.75\pi t$$

- 44. A signal $x(t) = 100 \cos (24\pi \times 10^3)t$ is ideally sampled with a sampling period of 50μ sec and then passed through an ideal low pass filter with cutoff frequency of 15 KHz. Which of the following frequencies is/are present at the filter output?
 - (a.) 12 KHz only
 - (b.)8 KHz only
 - (c.) 12 KHz and 9 KHz
 - (d.) 12 KHz and 8 KHz
- 45. If the variance σ_x^2 of d(n) = x(n) x(n-1) is one-tenth the variance σ_x^2 of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation function $R_{xx}(k)/\sigma_x^2$ at k=1 is
 - (a.) 0.95
 - (b.)0.90
 - (c.)0.10
 - (d.)0.05
- 46. A plane wave is characterized by $\vec{E} = \left(0.5 \hat{x} + \hat{y} e^{j\pi/2}\right) e^{j\omega r jkz}$

This wave is

- (a.) linearly polarized
- (b.) circularly polarized
- (c.) elliptically polarized
- (d.)unpolarized
- 47. Distilled water at 25°C is characterized by $\sigma = 1.7 \times 10^{-4}$ mho/m and $\epsilon = 78\epsilon_0$ at a frequency of 3 GHz. Its loss tangent tan δ is
 - (a.) 1.3×10^{-5}
 - (b.) 1.3×10^{-3}
 - (c.) $1.7 \times 10^{-4} / 78$
 - $(d.) 1.7 \times 10^{-4} / (78 \in_{0})$
 - $(\epsilon_0 = 10^{-9}/(36\pi)F/m)$
- 48. The electric field on the surface of a perfect conductor is 2V/m. The conductor is immersed in water with $\in 80 \in_0$. The surface charge density on the conductor is
 - (a.) $0C/m^2$
 - (b.) 2 C/m^2

www.parikshaguru.com

- (c.) $1.8 \times 10^{-11} / \text{C/m}^2$
- $(d.)1.41 \times 10^{-9} / C/m^2$
- $(\epsilon_0 = 10^{-9}/(36\pi) \text{ F/m})$
- 49. A person with a receiver is 5 Km away from the transmitter. What is the distance that this person must move further to detect a 3-dB decrease in signal strength?
 - (a.) 942 m
 - (b.) 2070 m
 - (c.) 4978 m
 - (d.)5320 m
- 50. Consider the following assembly language program.

M VI B, 87H
MOV A, B
START: JMP NEXT
M VI B, 00H
XRA B
OUT PORTI

HLT

NEXT: XRA B

JP START
OUT PORT 2

HLT

The execution of the above program in an 8085 microprocessor will result in

- (a.) an output 87H at PORT 1
- (b.) an output of 87H at PORT2
- (c.) Infinite looping of the program execution with accumulator data remaining at 00H.
- (d.)infinite looping of the program execution with accumulator data alternating between 00H and 87H