DECEMBER 2008

Code: DE01 /

DC01 Subject: MATHEMATICS - I Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following: (2x10)

- a. If one root of the $x^2 + ax + 2b^2 = 0$ be double of the other, then
 - (A) a=2b

 (\mathbf{B}) b=2a

(C) a=3b

(D) b=3a

$$\sin 3A + \sin A$$

- b. $\cos 3A + \cos A$ is equal to
 - (A) tan A

(B) tan 2A

(C) cot A

(D) cot

- 2A
- c. The point (x, y) lies on the line joining (2, 1) and (-6, -3) if
 - $(\mathbf{A}) \quad \mathbf{x} = 2\mathbf{y}$

(B) y = 2x

(C) x = y

- **(D)** x+v=0
- d. The equation of the straight line which passes through (3, 5) and is parallel to 2x+3y=7 is
 - **(A)** 3x 2y = 9

(B) 2x + 3y = 19

(C) 3x - 2y = -1

- **(D)** 2x + 3y = 21
- e. The equation of the circle passing through the origin and making intercepts -2 and 3 on x-axis and y-axis respectively is
 - (A) $x^2 + y^2 2x + 3y = 0$ (B) $x^2 + y^2 + 2x 3y = 0$

(C)
$$x^2 + y^2 - 2x - 3y = 0$$
 (D) $x^2 + y^2 + 2x + 3y = 0$

$$\mathbf{x}^2 + \mathbf{y}^2 + 2\mathbf{x} + 3\mathbf{y} = 0$$

f. If $y = \log(\sec x + \tan x)$, then $\frac{dy}{dx}$ is equal to

$$(A) \frac{1}{\sec x + \tan x}$$

(B) sec x

(C) tan x

(D) $\sec x - \tan x$

g. The value of $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ is equal to

(A) 1

(B) 2

(C) 0

(D) none of these

h. $\int \frac{dx}{1+\sin x}$ is equal to

(A)
$$\log (1 + \sin x)$$

$$\mathbf{(B)} \ \frac{\log \left(1 + \sin \ \mathbf{x}\right)}{\cos \mathbf{x}}$$

(C) $\sec x - \tan x$

(D) $\tan x - \sec x$

i. The area bounded by the axis of x and the curve $y = 1 - x^2$ is

(A) $\frac{1}{3}$

(B) $\frac{2}{3}$

(D) 1

The order and the degree of the differential equation are

 $x^{2} \left(\frac{d^{2}y}{dx^{2}}\right)^{3} + y \left(\frac{dy}{dx}\right)^{4} + y^{4} = 0$

(A) 3, 2

(B) 2, 3

(C) 2, 4

(D) 3, 4

- Q.2 a. The coefficients of second, third and fourth terms in the expansion of $(1+x)^n$ are in A.P.; find the value of n. (8)
 - b. If the sum of first n terms of an A.P. is zero, show that the sum of next m terms is $-\frac{a(n+m)m}{n-1}$, if a be the first term of the A.P. (8)
- Q.3 a. If $A+B+C=\pi$, show that $\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = 8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ (8)
 - b. In any triangle ABC, show that $a \sin(B-C) + b \sin(C-A) + c \sin(A-B) = 0$ (8)
- **Q.4** a. Determine the ratio in which 3x 5y + 8 = 0 divides the join of (4, 3) and (8, 7). Also find the coordinates of that point. (8)
 - b. Find the equation of a straight line passing through the point of intersection of 5x 3y = 1 and 2x + 3y = 23 and perpendicular to the line x 2y = 3. (8)
- Q.5 a. Find the equation of a circle whose centre is (3, -4) and passes through the intersection of the straight lines 3x + 4y = 0 and 4x + 3y = 0. (8)
 - b. Find the vertex, focus, latus rectum and directrix of the parabola $y^2 = 4x + 4y$.
- Q.6 a. Find the differential coefficient of tan x from first principle.(8)

b. Find
$$\frac{dy}{dx}$$
, if $y = \tan^{-1} \left[\frac{\cos x + \sin x}{\cos x - \sin x} \right]$. (8)

- Q.7 a. Find the points at which the function y = (x-1)(x-2)(x-3) has maximum and minimum values. (8)
 - b. Evaluate $\int \sqrt{\frac{2+x}{2-x}} dx$ (8)

$$\mathbf{Q.8} \quad \text{a. Evaluate} \quad {\overset{\pi}{\overset{4}{0}}} \quad \log \left(1 + \tan \theta\right) d\theta$$

- b. Find the volume of the solid generated by the revolution of the semi-circle of radius a, about its bounding diameter. (8)
- Q.9 Solve the following differential equations:-

(i)
$$(x^2 - yx^2) dy + (y^2 + xy^2) dx = 0$$
.

(ii)
$$\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin 2x$$
 (2 x 8 = 16)