DECEMBER 2007

Subject: MATHEMATICS - I Max. Marks: 100

NOTE: There are 9 Questions in all.

Code: DE01 / DC01

Time: 3 Hours

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or best alternative in the following: **Q.1** (2x10)

		5	,5,10,640	
a.	The number of terms in the sequence			are

(A) 8

(B) 9

(C) 10

(D) 6

b. First three terms in the expansion of
$$(1-2x^3)^{1/2}$$
 are

(A)
$$1+11x^{3} + \frac{99}{2}x^{6} + \dots$$
(B)
$$1+\frac{11}{2}x^{3} + 99x^{6} + \dots$$
(C)
$$1-\frac{11}{2}x^{3} - \frac{99}{2}x^{6} + \dots$$
(D)
$$1-11x^{3} + \frac{99}{2}x^{6} + \dots$$

$$(C)$$
 $1-\frac{11}{2}x^3-\frac{99}{2}x^6+\dots$

$$1-11x^3+\frac{99}{2}x^6+\dots$$

(A)
$$-(2+\sqrt{3})$$

(B)
$$2 - \sqrt{3}$$

(C)
$$-2+\sqrt{3}$$

(D)
$$2 + \sqrt{3}$$

d. If
$$\cos A = \frac{4}{5}$$
, then the value of $\cos 2A$ is

(A)
$$\frac{3}{25}$$

(B)
$$\frac{1}{2^{\frac{1}{2}}}$$

(C)
$$\frac{2}{2}$$

(D)
$$\frac{1}{2}$$

- e. The value of 'x' such that PQ = QR, where P, Q and R are (6, -1), (1, 3) and (x, 8)respectively is given by
 - **(A)** 5, -3

(B) 3, 5

(C) 2, 5

- **(D)** 2, 3
- Slope of the line passing through the points $\left(\frac{5}{2},3\right)$ & $\left(0,\frac{3}{4}\right)_{ic}$
 - (A) $\frac{9}{10}$ (C) $\frac{9}{5}$

$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 3x + 3}$$

- g. $\lim_{x \to 3} \frac{x^2 4x + 3}{x^2 2x 3}$ is equal to
 - **(A)** $\frac{1}{3}$

(C) $\frac{1}{2}$

- h. If $y = \sin^{-1}(3x 4x^3)$ then $\frac{dy}{dx}$ is equal to

- i. $\int \sin 3x \sin 2x dx$ is equal to
 - $\mathbf{(A)} \quad \frac{1}{2} \left(\cos x + \frac{\cos 5x}{5} \right)$
- $\mathbf{(B)} \quad \frac{-1}{2} \left(\cos x + \frac{\sin 5x}{5} \right)$
- (C) $\frac{1}{2} \left(\sin x \frac{\sin 5x}{5} \right)$
- $\frac{1}{2} \left(\sin x + \frac{\sin 5x}{5} \right)$

- Order and degree of the differential equation $\frac{d^3y}{dx^3} + \left(\frac{d^2y}{dx^2}\right)^3 + \frac{dy}{dx} + 4y = \sin x$ is given by
 - **(A)** 3, 2

(B) 2, 3

(C) 1, 3

(D) 3, 1

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. If 5 times the 5th term of an A.P. is equal to the 10 times the 10th term, find the 15th term of the A.P. (8)
 - b. If S_n denotes the sum of n terms of a G.P., prove that $(S_{10} S_{20})^2 = S_{10} (S_{30} S_{20})$.
- Q.3 a. Show that $\frac{\sin A \sin 3A + \sin 5A \sin 7A}{\cos A \cos 3A \cos 5A + \cos 7A} = \cot 2A$ (8)
 - b. If in the triangle ABC, $A = 60^{\circ}$, prove that $\frac{1}{c+a} + \frac{1}{a+b} = \frac{3}{a+b+c}$. (8)
- **Q.4** a. Find the equation of the straight line which passes through the intersection of the lines x + y 3 = 0 and 2x y = 0 and is inclined at an angle of 45° with x-axis. (8)
 - b. Show that $9x^2 + 4y^2 54x 56y + 241 = 0$ represents an ellipse. Find its centre, vertices, foci, eccentricity, directrices, latusrectum and equations of major and minor axis. (8)
- Q.5 a. Find the equation of the circle which passes (4, 1) & (6, 5) and having centre on the line 4x+y=16.

b. Find the value of
$$x \to b$$
 $\frac{\lim_{x \to b} \frac{e^{ax} - e^{ab}}{x - b}}{x - b}$ (8)

- **Q.6** a. Differentiate $y = \tan x$ w.r.t. 'x' from first principle. (6)
 - b. Differentiate $y = x^{\sin x} + (\sin x)^x w.r.t 'x'$. (10)

- Q.7 a. Prove that straight line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = be^{-x/a}$ at the point where the curve crosses the axis of y. (8)
 - b. Find the volume generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about x-axis. (8)

$$\int_{2}^{\pi/2} \log \sin x dx = -\frac{\pi}{2} \log 2$$
Q.8 a. Prove that 0 . (10)

b. Solve
$$\int \frac{\left(\sin^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} dx$$
 (6)

Q.9 a. Solve
$$3e^{x} \tan y dx + (1 - e^{x}) \sec^{2} y dy = 0$$
. (8)