**Subject: MATHEMATICS-I** 

**NOTE:** There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to O. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

## **Q.1** Choose the correct or best alternative in the following:

 $(2 \times 10)$ 

a. The value of the limit 
$$\lim_{(x,y)\to(0,0)} \frac{x+\sqrt{y}}{\sqrt{(x^2+y)}}$$
 is

- (A) limit does not exist
- **(B)** 0

**(C)** 1

**(D)** -1

b. If 
$$u = x^y$$
 then the value of  $\frac{\partial u}{\partial y}$  is equal to

**(A)** 0

**(B)**  $x^{\nu} \log(x)$  **(D)**  $yx^{\nu-1}$ 

(C)  $xy^{x-1}$ 

c. If 
$$u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$$
, then the value of  $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$  is

(A) u

**(B)** 2u

**(C)** 3u

**(D)** 0

d. The value of integral 
$$\int_{0}^{z} \int_{1}^{z} xy^{2}z \, dx \, dy \, dz$$
 is equal to

- The value of integral d.

**(A)** 22 **(C)** 5

**(B)** 26 **(D)** 25

e. The solution of the differential equation 
$$(y+x)^2 \frac{dy}{dx} = a^2$$
 is given by

$$(\mathbf{A}) \quad y + x = a \tan\left(\frac{y - c}{a}\right)$$

**(B)** 
$$y - x = \tan\left(\frac{y - c}{a}\right)$$

(C) 
$$y-x=a\tan(y-c)$$

(B) 
$$a(y-x) = \tan\left(y-\frac{c}{a}\right)$$

f. The solution of the differential equation 
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$$
 is

(A) 
$$y = ae^{x} + be^{2x} + \frac{1}{2}e^{3x}$$
 (B)  $y = ae^{-x} + be^{-2x} + \frac{1}{2}e^{3x}$  (C)  $y = ae^{x} + be^{-2x} + \frac{1}{2}e^{3x}$  (D)  $y = ae^{-x} + be^{2x} + \frac{1}{2}e^{3x}$ 

$$y = ae^{x} + be^{-2x} + \frac{1}{2}e^{3x}$$
**(C)** 
$$y = ae^{-x} + be^{2x} + \frac{1}{2}e^{3x}$$
**(D)**

- If 3x+2y+z=0, x+4y+z=0, 2x+y+4z=0, be a system of equations then g.
  - (A) system is inconsistent
    - (B) it has only trivial solution
  - (C) it can be reduced to a single equation thus solution does not exist
  - (**D**) Determinant of the coefficient matrix is zero.
- If  $\lambda$  is an eigen value of a non-singular matrix A then the eigen value of  $A^{\text{-}1}$  is h.

(A) 
$$1/\lambda$$

(C) 
$$-\lambda$$

**(D)** 
$$-1/\lambda$$

i. The product of the eigen values of the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
 is

j. The value of the integral 
$$\int x^2 J_1(x) dx$$
 is

**(A)** 
$$x^2 J_1(x) + c$$

**(B)** 
$$x^2 J_{-1}(x) + c$$
 **(D)**  $x^2 J_{-2}(x) + c$ 

(C) 
$$x^2 J_2(x) + c$$

**(D)** 
$$x^2 J_{-2}(x) + c$$

## Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

Find the extreme value of the function f(x,y,z) = 2x + 3y + z**Q.2** a. Find the exuer  $x^2+y^2=5$  and x+z=1such that (8)

$$f(x,y) = \begin{cases} (x+y)\sin\left(\frac{1}{x+y}\right), & x+y \neq 0\\ 0, & x+y = 0 \end{cases}$$
 is continuous at

- b. Show that the function 0,0 is continuous a 0,0 but its partial derivatives of first order do not exist at 0,0.
- Q.3 a. Evaluate the integral  $\int_{T}^{\pi} z dx dy dz$ , where T is region bounded by the cone  $x^2 \tan^2 \alpha + y^2 \tan^2 \beta = z^2$  and the planes z=0 to z=h in the first octant. (8)
  - b. Show that the approximate change in the angle A of a triangle ABC due to small changes  $\delta a$ ,  $\delta b$ ,  $\delta c$  in the sides a, b, c respectively, is given by  $\delta A = \frac{a}{2\Delta} (\delta a \delta b \cos C \delta c \cos B)$  where  $\Delta$  is the area of the triangle. Verify that  $\delta A + \delta B + \delta C = 0$  (8)
- Q.4 a. If  $x+y=2e^{\theta}\cos\phi$  and  $x-y=2ie^{\theta}\sin\phi$  Show that  $\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \phi^2} = 4xy \frac{\partial^2 u}{\partial x \partial y}$  (8)
  - b. Using the method of variation of parameter method, find the general solution of the differential equation  $y'' + 16y = 32 \sec 2x$ (8)
- **Q.5** a. Find the general solution of the equation  $y'' 4y' + 13y = 18e^{2x} \sin 3x$ . (8)
  - b. Find the general solution of the equation  $x^3 \frac{d^3 y}{dx^3} + 5x^2 \frac{d^2 y}{dx^2} + 5x \frac{dy}{dx} + y = x^2 + \ln x$  (8)
- **Q.6** a. Solve  $(1+y^2)dx = (\tan^{-1} y x)dy$  (8)
  - b. The set of vectors  $\{x_1, x_2\}$ , where  $x_1 = (1,3)^T$ ,  $x_2 = (4,6)^T$  is a basis in  $\mathbb{R}^2$ . Find a linear transformations T such that  $Tx_1 = (-2,2,-7)^T$  and  $Tx_2 = (-2,-4,-10)^T$  (8)

$$A = \begin{pmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$
. Hence,

- Q.7 a. Show that the matrix A is diagonalizable. Show that the matrix P such that  $P^{-1}AP$  is a diagonal matrix. (8)
  - b. Investigate the values of  $\lambda$  for which the equations  $(\lambda 1)x + (3\lambda + 1)y + 2\lambda z = 0, (\lambda 1)x + (4\lambda 2)y + (\lambda + 3)z = 0,$  $2x + (3\lambda + 1)y + 3(\lambda 1)z = 0$

are consistent, and hence find the ratios of x:y:z when  $\lambda$  has the smallest of these values. (8)

**Q.8** a. Find the first five non-vanishing terms in the power series solution of the initial value problem

$$(1-x^2)y'' + 2xy' + y = 0, \ y(0) = 1, y'(0) = 1.$$
 (11)

- b. Show that  $\int xJ_0^2(x)dx = \frac{1}{2}x^2 \left[ J_0^2(x) + J_1^2(x) \right]$  (5)
- Q.9 a. Show that  $J_{5/2}(x) = \sqrt{\frac{2}{n\pi}} \left[ \frac{1}{x^2} (3 x^2) \sin x \frac{3}{x} \cos x \right]$  (8)
  - b. Show that  $\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$ . (8)