December 2005

Time: 3 Hours

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or best alternative in the following: (2x10)
 - a. The value of limit $(x,y) \rightarrow (0,0) \frac{x \cdot \sin(x^2 + y^2)}{x^2 + y^2}$ is
 - **(A)** 0

(B) 1

(C) -1

- (D) does not exist
- b. If $f(x,y) = e^{xy^2}$, the total differential of the function at the point (1, 2) is
 - (A) e(dx + dy)

(B) $e^4(dx + dy)$

(C) $e^{4}(4dx + dy)$

(D) $4e^4(dx + dy)$

$$\begin{array}{cc} u\left(x,y\right)=x^2\,\tan^{-1}\!\left(\frac{y}{x}\right)\!-y^2\,\tan^{-1}\!\left(\frac{x}{y}\right)\!,x>0,y>0\\ x^2\,\frac{\partial^2 u}{\partial x^2}\!+\!2xy\,\frac{\partial^2 u}{\partial x\partial y}\!+\!y^2\,\frac{\partial^2 u}{\partial y^2} \end{array} \text{ equals} \end{array}$$

(A) 0

(B) 2u

(C) u

(D) 3u

- - **(A)** $\frac{1}{20}$

(B) $\frac{1}{40}$

(C) $\frac{1}{720}$

(D) $\frac{1}{800}$

f. The complementary function for the solution of the differential equation
$$2x^2y'' + 3xy' - 3y = x^3$$
 is obtained as

(A)
$$Ax + Bx^{-3/2}$$

(C) $Ax^2 + Bx$

(B)
$$Ax + Bx^{3/2}$$

(C)
$$Ax^2 + Bx$$

(B)
$$Ax + Bx^{3/2}$$

(D) $Ax^{-3/2} + Bx^{3/2}$

g. Let
$$V_1 = (1, -1, 0)$$
, $V_2 = (0, 1, -1)$, $V_3 = (0, 0, 1)$ be elements of \mathbb{R}^3 . The set of vectors $\{V_1, V_2, V_3\}$ is

- (A) linearly independent
- **(B)** linearly dependent

(C) null

(D) none of these

$$A = \begin{bmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ 0 & 0 & \mu & -1 \\ -6 & 11 & -6 & 1 \end{bmatrix}_{\mathbf{i}\mathbf{6}}$$

h. The value of μ for which the rank of the matrix to 3 is

$$(D) - 1$$

i. Using the recurrence relation, for Legendre's polynomial
$$P_{n+1}(x) = (2n+1) \times P_n(x) - n P_{n-1}(x)$$
, the value of $P_2(1.5)$ equals to

(A) 1.5

(B) 2.8

(C) 2.875

(**D**) 2.5

j. The value of Bessel function
$$J_2(x)$$
 in terms of $J_1(x)$ and $J_0(x)$ is

$$(\mathbf{A})^{-2}\,\mathbb{J}_1(\mathbb{X}) - \mathbb{X}\,\mathbb{J}_0(\mathbb{X})$$

$$\mathbf{(B)} \quad \frac{4}{x} J_1(x) - J_0(x)$$

(C)
$$2J_1(x) - \frac{2}{x}J_0(x)$$
 (D) $\frac{2}{x}J_1(x) - J_0(x)$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Show that for the function $f(x,y) = \sqrt{|xy|}$, partial derivatives f(x) and f(y) both exist at the origin and have value 0. Also show that these two partial derivatives are continuous except at the origin. (8)
 - b. In a plane triangle ABC, if the sides a, b be kept constant, show that the variations of its angles are given by the relation

$$\frac{dA}{\sqrt{a^2 - b^2 \sin^2 A}} = \frac{dB}{\sqrt{b^2 - a^2 \sin^2 B}} = -\frac{dC}{C}.$$
 (8)

Q.3 a. Find the shortest distance from (0, 0) to hyperbola $x^2 + 7y^2 + 8xy = 225$ in XY-plane. (8)

$$\int_{0}^{\frac{a}{\sqrt{2}}} \int_{0}^{x} x \, dx dy + \int_{\frac{a}{\sqrt{2}}}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x \, dx dy$$

b. Express $\sqrt{2}$, as it. (8)

, as a single integral and then evaluate

- Q.4 a. Obtain the volume bounded by the surface $z = C\left(1 \frac{x}{a}\right)\left(1 \frac{y}{b}\right)$ and a quadrant of the elliptic cylinder $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, z > 0 and where a, b > 0.
 - b. Solve the following differential equations:

sec
$$x \frac{dy}{dx} = y + \sin x$$

(i) $\left(\frac{y}{x} \sec y - \tan y\right) dx + (\sec y \log x - x) dy = 0$
(ii) $(\frac{y}{x} \sec y - \tan y) dx + (\frac{y}{x} \sec y - \cos y) dy = 0$

Q.5 a. Solve the following differential equation by the method of variation of parameters.

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 e^x$$
(9)

b. Solve
$$(D^2 - 4D + 1)y = e^{2x} \sin 2x$$
. (7)

- Q.6 a. Show that non-trivial solutions of the boundary value problem $y^{(iv)} w^4 y = 0, y(0) = 0 = y''(0), \quad y(L) = 0 = y''(L) = 0 \text{ are}$ $y(x) = \sum_{n=1}^{\infty} D_n \sin\left(\frac{n \pi x}{L}\right), \text{ where } D_n \text{ are constants. (9)}$
 - b. Show that the matrices A and \mathbb{A}^T have the same eigenvalues. Further if \mathbb{A} , \mathbb{A} are two distinct eigenvalues, then show that the eigenvector corresponding to \mathbb{A} for A is orthogonal to eigenvector corresponding to \mathbb{A}^T .
- **Q.7** a. Let T be a linear transformation defined by

$$T\begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \qquad T\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$$

$$T\begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \qquad T\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}.$$
Find
$$T\begin{bmatrix} \begin{pmatrix} 4 & 5 \\ 3 & 8 \end{pmatrix} \end{bmatrix}.$$

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 atrix

- b. Find the eigen values and eigen vectors of the matrix . (9)
- **Q.8** a. Solve the following system of equations:

$$\begin{aligned} & x_1 + 2x_2 - x_3 = 3 \\ & 3x_1 - x_2 + 2x_3 = 1 \\ & 2x_1 - 2x_2 + 3x_3 = 2 \\ & x_1 - x_2 + x_3 = -1 \end{aligned}$$

(6)

- b. Find the series solution about the origin of the differential equation $x^2y'' + 6xy' + (6+x^2)y = 0$. (10)
- **Q.9** a. Express $f(x) = x^4 + 2x^3 6x^2 + 5x 3$ in terms of Legendre polynomials. (8)
 - b. Evaluate $\int x^{-1} J_4(x) dx$, where $J_n(x)$ denotes Bessel function of order n. (8)