Roll No.

Total No. of Questions: 09]

[Total No. of Pages: 03

B. Tech. (Sem. - 3rd)

NETWORK ANALYSIS AND SYNTHESIS

SUBJECT CODE: EE - 201

<u>Paper ID</u>: [A0305]

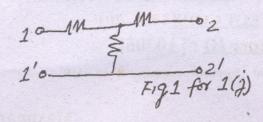
[Note: Please fill subject code and paper ID on OMR]

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

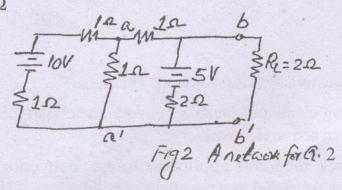
- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

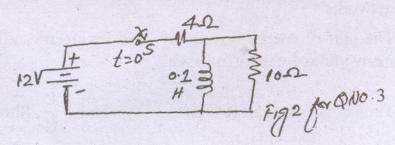

Section - A

Q1)

 $(10\times 2=20)$

- a) What is objective of using Network Theorems?
- b) Name circuit elements of an a.c. network and classify them as passive elements and active elements.
- c) Are network theorems applicable to a.c. networks also or their applications restricted to d.c. networks only.
- d) An R-L series circuit of $R = 10\Omega$ and L = 1H is connected across a d.c. voltage of 100V. What is amplitude of current flowing in the circuit?
- e) What is advantage of using Laplace transform in analysis of electrical networks?
- f) The unit of energy commonly used by electric utility is kwh. How many joules are there in 1 kwh?
- g) Time constant of an R-L circuit is given by $\frac{L}{R}$. Show that the unit of $\frac{L}{R}$ is second.
- h) Define network functions. Is transfer function also a network function. If TF = Z(s), identify input and output function corresponding to above T.F.


- i) Give classification of Filters.
- j) A two terminal pair network (TTPN) is shown in Fig. 1, show if the given network is
 - (i) reciprocal (ii) symmetrical and (iii) balanced.


Section - B

$$(4\times 5=20)$$

22) State and explain Thevenin's theorem. For the network shown in Fig. 2, sketch Thevenin's equivalent at b-b' and obtain current in load resistance,

Q3) Discuss transient and steady state response in case of an R-L series circuit energized by a d.c. voltage source, Evolt. A 12V d.c. voltage source is disconnected in Fig. 2 at t = 0. Show the wave shape of inductor current (i) and the voltage (v) across inductor for all times.

Q4) Define poles and zeroes of a network function. Show pole-zero configuration for the transfer admittance function

H (s) =
$$\left(\frac{s^2 + 2s + 17}{s^2 + 3s + 2}\right)$$

Use geometrical method to evaluate the T.F. at the test point (j 10).

State and prove Convolution Theorem. How is convolution integral evaluated - discuss. Consider two functions $f_1(t)$ and $f_2(t)$ given by

$$f_1(t) = 1$$
, $0 < t < 1$
= 0, otherwise

$$f_2(t) = \frac{1}{R} \left(1 - e^{-\frac{R}{L}t} \right), t \ge 0$$

obtain $f_1(t) * f_2(t)$.

05)

Q6) A two terminal network consists of a coil having an inductance, L and resistance R shunted by a capacitor C. The poles and zeroes of the driving point impedance function of this network are given by

$$p_1$$
 and $p_2 = -\frac{1}{2} \pm j \sqrt{3}/2$, zero $z_1 = -1$

If $Z(s)|_{s=j0} = -1$, determine R, L & C.

Section - C

$$(2\times 10=20)$$

- Q7) (a) How is a physical network realised by considering the driving point admittance function-discuss.
 - (b) Determine the Foster and Cauer form of realization if the driving point impedance function Z(s) is given by

$$Z(s) = \frac{4(s^2+1)(s^2+9)}{s(s^2+4)}.$$

- Q8) (a) Derive expressions for (i) characteristic impedance and (ii) propagation constant of a pure reactive network.
 - (b) Discuss how can a constant k low pass filter be designed. Design a constant k type band pass filter section to be terminated in 600 Ω resistance having cut off frequencies of 2kHz and 5kHz.
- (9) Write short notes on:
 - (a) Composite Filters and
 - (b) On time domain behaviours from poles and zeroes.