M.Sc. (Previous) Degree Examination August 2009 Directorate of Correspondence Course (Freshers)

CHEMISTRY Physical Chemistry

Time: 3 Hours

Max. Marks: 85

Note:

- Answer any ELEVEN question from Part-A, THREE questions from Part-B and any THREE full questions from Part-C.
- 2. Figures to the right indicate marks.

PART-A

Answer any ELEVEN of the following.

11x2=22

- Write the rate expression on the basis of Collision theory and explain the terms involved.
- State and explain steady state approximation with examples.
- Distinguish between chemisorption and physisorption.
- d) Explain elastic and inelastic scattering with examples.
- e) What are isotopes and isobars? Give one example for each.
- f) Mention the uses of radioactive isotopes.
- g) State and explain coulombs law of electrochemistry.
- h) Define the terms activity and activity coefficients.
- i) What are electrolytes? Explain their different kinds with examples.
- Give the difference between galvanic cell and electrolytic cells.
- Represent nickel cadmium battery and mention its applications.
- I) Define and mention the significance of decomposition potential.
- m) State and explain first law of thermodymamics.
- Mention the limitations of Van't Hoff equation.
- o) What is meant by residual entropy? Explain.

PART-B

Answer any THREE of the following questions.

3x8=24

- a) Discuss the factors affecting the critical micellar concentration (CMC)s of Surfactants.
 - b) Discuss about collision theory.

4+4=8

- a) Show that half-life period of given radioactive substance in independent of the amount of the substance present initially but it depends upom decay constant.
 - Give an account of Power reactors.

4+4=8

4.	a)	Deduce Debye-Hackel-Onsagar conduction equation.		
	b)	Write a note on ion-selective electrodes.	4+4=8	
5.	a)	Define and explain polarization. Mention the factors affecting polarization.		
	b)	Write a note on over-voltage.	4+4=8	
6.	a)	Deduce Gibbs-Dubem equation.		
	b)	Describe variation of free energy with temperature.	4+4=8	
		PART-C		
Ans	wer	any THREE of the following questions.	3x13=39	
7.	a)	Obtain an expression for the rate constant on the basis of activate theory.	ed complex	
	b)	Briefly discuss about Gibbs adsorption isotherm.	7+6=13	
8.	a)	Show that radioactive disintegration follows first order kinetics.		
	b)	Explain nuclear fission and fusion reactions with examples.	7+6=13	
9.	a)	Discuss the Debye-Huckel theory of strong electrolytes.		
	b)	Discuss in detail about biosensors.	7+6=13	
10.	a)	What are fuel cells? How do you classify into different types? working of hydrogen-oxygen fuel cell.	Explain the	
	b)	Describe construction, working and applications of dry cell.	7+6=13	
11.	a)	Derive Duhem-Margules equation and mention its applications.		
	b)	Obtain Clausius Clapeyron equation.	7+6=13	
		* * *		

.