

MHT-CET 2007 - Sample Test Paper

Paper 1 – Physics & Chemistry

1. A satellite of mass 'm' revolves around the earth of radius 'R' at a height 'x' from its surface. If 'g' is the acceleration due to gravity on the surface of the earth, the orbital speed of the

satellite is:

	(A)gx	(B) $\frac{gR}{R-x}$	$(C) \frac{gR^2}{R+x}$	$(D)\left(\frac{gR^2}{R+x}\right)^{1/2}$			
2.	A particle rests on the top of a hemisphere of radius 'r'. It begins to slide without friction as shown in figure. If it leaves the surface of hemisphere at height 'h' above the centre (O) of hemisphere, then:						
	(A)h = r	(B) $h = \frac{r}{3}$	(C) h = 2r	(D) $h = \frac{2r}{3}$			
3.		ne surface tension of a liquid is 5 Nm^{-1} . If a thin film is formed on a loop of area 0.4 m^2 , then its surface energy will be					
	(A) $5 \times 10^{-2} \text{ J}$	(B) $4 \times 10^{-1} \text{ J}$	(C) $2 \times 10^{-1} \text{ J}$	(D) $3 \times 10^{-1} \mathrm{J}$			
4.	According to Prevost'	s theory every object					
	(A) radiates heat at the temperature above room temperature (B) absorbs heat at the temperature above room temperature (C) radiates heat at all temperatures (D) reflects radiant heat at all temperatures						
5.	When interference pattern is obtained the distance between the mid point of the 6 th dark band on one side and 4 th bright band on the other side of the central bright band is						
	(A) 2 times the band width(C) 9.5 times the band width		` /	(B) 10.5 times the band width (D) 10 times the band width			
6. The internal resistance of lead acid cell is less than the lead acid cell is				sistance of			
	(A) Daniell cell	(B) Leclanche cel	(C) dry cell	(D) all of these			
7.	A resistance of 2 Ω is connected in parallel to a galvanometer of resistance 48 Ω . The fraction of the total current passing through the resistance of 2 Ω is						
	(A)92%	(B) 94%	(C) 96%	(D)98%			
8.	A coil and a bar magnet move in the same direction with same high speed then (A) high emf is induced across the coil (B) no emf is induced across the coil (C) low emf is induced across the coil (D) magnetic flux linked with the coil changes fast						
9.	Plate characteristics of a triode valve are the curves obtained on plotting a graph between (A) plate voltage and plate current at constant grid voltage (B) grid voltage and plate current at constant plate voltage (C) grid voltage and plate voltage at constant plate current (D) filament current and plate current at constant plate voltage						
10.	To use a transistor as an amplifier						
	(A) emitter-base junct(B) both junctions are(C) both junctions are	forward biased	and collector-base ju	nction is reverse biased			

(D) it does not matter how the transistor is biased, it always works as an amplifier

11.	•	g $t_{1/2} = 2.3$ days was r t in the container. The (B) 2400 mg		It was found that 300 mg sotope was (D) 3600 mg			
12.	_	elements, silicon has the (B) Electronegativity	_	(D) Electropositivity			
13.	The pair of molecules (A) NH ₃ , H ₂ O	s having same hybridis (B) BF ₃ , CO ₂		(D) C ₂ H ₂ , C ₂ H ₄			
14.	$4s^2$ and $B = 1s^2 2s^2 2$	B have the following e $2p^6 3s^2 3p^5$. and formed by the com (B) A_5B_2		as $A = 1s^2 2s^2 2p^6 3s^2 3p^6$ (D) AB_5			
15.		et of barium chromate le without precipitation (B) 1.2×10 ⁻¹⁰ M	in a solution of 6×1	maximum concentration of 0^{-4} M K ₂ CrO ₄ is (D) 3×10^{-4} M			
16.	0.2M solution would	-	solution. The hydroniu (C) 0.2 M	um ion concentration of its (D) 0.5 M			
17.	Which of the followin (A) Ethanal		give a yellow precipitate (C) 1–propanol	ate with iodine and alkali? (D) 2–propanol			
18.	benzaldehyde is	ets of the reaction (B) Hydrobenzamide		d sodium hydroxide and (D) Benzophenone			
19.	On strong heating, am (A) Acetamide	nmonium acetate gives (B) Methylcyanide	(C) Urea	(D)Formamide			
20.	20. Identify Y in the following sequence. $CH_3CHO + CH_3MgI \xrightarrow{Ether} X \xrightarrow{H^+/H_2O} Y$						
		(B) CH ₃ CH ₂ OH		(D) $(CH_3)_3 COH$			

Paper 2 – Mathematics

1.	The value of $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$ is							
	(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) does not exist	(D) none of these				
2.	If $f'(3) = 5$, then $\lim_{h \to 0} \frac{f(3+h^2) - f(3-h^2)}{h^2}$ is							
	(A)5	(B) 10	(C) $\frac{1}{5}$	(D)2				
3.	The smallest value of (A)0	the polynomial $x^3 - 1$ (B) 126	$8x^2 + 96x$ in the interval (C) 135.	al [0, 9] is (D)160.				
4.	The equation of the circle passing through $(1, 0)$ and $(0, 1)$ and having smallest possible							
	radius is (A) $x^2 + y^2 - x - y = 0$ (C) $x^2 + y^2 - 2x - y = 0$		(B) $x^2 + y^2 + x + y = 0$ (D) $x^2 + y^2 - x - 2y = 0$					
5.	The eccentric angle of a point on the ellipse $\frac{x^2}{6} + \frac{y^2}{2} = 1$ whose distance from the centre of the							
	ellipse is 2, is (A) $\pi/4$	(B) $3\pi/2$	(C) $5\pi/3$	(D) $7\pi/6$.				
6.	$\int e^{e^{e^x}} e^{e^x} e^x dx$ is equal to :							
	$(A)\frac{1}{2}e^{e^{e^x}}+c$	(B) $e^{e^{e^x}} + c$	$(C) \frac{1}{2} e^{e^x} + c$	(D) $\left(e^{e^{e^x}}\right)^2 + c$				
7.	If A and B be two inv (A) A ⁻¹ B ⁻¹	ertible matrices of ord (B) B ⁻¹ A ⁻¹	er 3 each, then (AB) ⁻¹ (C) A ⁻¹ B	is equal to (D) AB ⁻¹				
8.	A family has 4 children. A child is selected at random from the family. Assuming that there are equal number of boys and girls in the family, the probability that the selected child is a girl, is							
	$(A)\frac{1}{6}$	(B) $\frac{1}{4}$	$(C)\frac{2}{3}$	(D) $\frac{1}{2}$				
9.	The real root of $f(x) = 0$ by Regula Falsi method (two iterations only) when							
	$f(x) = x^3 - x - 1$ in [1 (A) 1.2351	(B) 1.2531	(C) 1.3071	(D) 1.3071				
10.	10. The vector $\frac{1}{8}\hat{i} - \frac{3}{8}\hat{j} + \frac{1}{4}\hat{k}$ is							
	(A) unit vector		(B) parallel to the vector $2\hat{i} - 6\hat{j} + 4\hat{k}$					
	(C) perpendicular to the vector $2\hat{i} + \hat{j} + \hat{k}$		(D) makes an angle $\frac{\pi}{3}$ with $2\hat{i} - 4\hat{j} + 3\hat{k}$					