QUARTERLY EXAMINATION - 2013 QDR

XI – Std

MATHEMATICS

RATHA	VA	4
-------	----	---

Time: 3.00 Hrs

www.tnschools.co.in

Marks: 200

PART - A

Note: 1) All questions are compulsory. 2) Choose the most suitable answer from the given four alternatives and write the option code and the corresponding 40 X 1 = 40answer.

1. If
$$A\begin{bmatrix} 2 & 1 & 4 \\ -3 & 2 & 1 \end{bmatrix}$$
 and $x + A = 0$ then matrix x is

a)
$$\begin{bmatrix} 2 & 1 & 4 \\ -3 & 2 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} -2 & -1 & -4 \\ 3 & -2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} -2 & -1 & -4 \\ 3 & 2 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 2 & 1 & 4 \\ 3 & -2 & -1 \end{bmatrix}$

2. Matrix A is of order 2 X 3 and B is of order 3 X 2 then order of matrix BA is c) 2×2 a) 3×3 b) 2×3 $d) 3 \times 2$

3. The cofactor of -7 in
$$\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$$
 is a) -18 b) 18 c) -7 d) 7

If A is a square matrix of order 3 then |A| is 4.

b) -k | A |

c) $k^3 | KA |$

Two rows of a determinant Δ are identical when x = -a then the factor of Δ is 5. c) $(x + a)^2$ d) $(x - a)^2$ b) x - aa) x + a

6. The value of the determinant
$$\begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{vmatrix}^2$$
 is a) abc b) 0 c) $a^2b^2c^2$ d) -abc

7. If
$$\begin{bmatrix} 2x & 3x - y \\ 2x + z & 3y - w \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & 7 \end{bmatrix}$$
 then the value of x is a) 3 b) $\frac{3}{2}$ c) $\frac{2}{3}$ d) 2

8. If
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 then $|A|$ is

b) $\cos^2\theta + \sin^2\theta$ c) 0

If \overrightarrow{a} is a non zero vector and k is a scalar such that $| k\overrightarrow{a} | = 1$ then k is equal to 9.

a) a

b) 1

If $\overrightarrow{AB} = \overrightarrow{kAC}$ where k is a scalar then 10.

a) ABC are collinear

b) A, B, C are coplanar

c) \overrightarrow{AB} , \overrightarrow{AC} have the same magnitude d) A, B, C are coincident

If \vec{a} , \vec{b} position vector of A, B then position vector of midpoint of AB is

c) $\frac{a + 2b}{2}$

If G is centroid of a triangle ABC and G1 is centroid of a triangle A1B1C1 then

 $\overrightarrow{AA^1} + \overrightarrow{BB^1} + \overrightarrow{CC^1} = a) \overrightarrow{GG^1} \quad b) \ 3\overrightarrow{GG^1} \quad c) \ 2\overrightarrow{GG^1}$

d) 4GG1

13.	Which of the following vectors has the same direction as the vector $\vec{i} - 2\vec{j}$					
	\vec{a}) $+\vec{i}$ + $2\vec{j}$				_	
14.	If $\vec{a} = 2\vec{i} + \vec{j} - 8\vec{k}$	$, \vec{b} = \vec{i} + 3\vec{j} - 4$	$\overrightarrow{\mathbf{k}}$ then the magnit	ude of $\vec{a} + \vec{b}$	<u> </u>	
	a) 13	b) 13/3	c) 3/13	d) 4/13		
15.	If α , β , γ are the ang	le made by any vec	tor r with coordina	ite axes, then	the value	
	of $\cos^2 \alpha + \cos^2 \beta + c$, .				
	a) 0	b) 2	c) 1	d) -1		
16.	The position vector of	of A and B are \bar{a} are	$nd \ \overline{b} \ . P divides Al$	B in the ratio 3	3:1 is the	
	mid point of AP. The position vector of Q.					
	$\overline{5a} + \overline{3b}$	$\frac{1}{3a} + \frac{1}{5h}$	$\frac{1}{5a} + \frac{1}{3b}$	$\frac{\vec{3}}{3} + \vec{b}$	ř	
	a) $\frac{\overline{5a} + \overline{3b}}{8}$	b) $\frac{3a+3b}{8}$	c) $\frac{\partial a + \partial b}{\Delta}$	d) $\frac{3a+b}{4}$		
17.	If $nPr = 72 nCr$ then	•	, T	7	·	
18.	a) 6	b) 5	c) 7	d) 8		
10.	The number of 4 digino digit is being repe		be formed by the di	gits 3, 4, 5, 6, 7	, 8, 0 and	
	a) 720		c) 280	d) 560	,	
19.	Á polygon has 44 dia	,	,	, 500		
<u>.</u>	a) 11	b) 7	c) 8	d) 12		
20.	The sum of the coeffi	icient in the expans	sion $(1 - x)^{10}$ is	1) 4004	•	
	a) U	b) 1	c) 10 ⁻	a) 1024		
21.	a) 0 The last term in the e	expansion of $(2+\sqrt{2})$	$^{(3)}$ is a) 81	b) 27 c) √3	$\frac{1}{3}$ d) 3	
22.	If a, b, c are in A.P. th					
	a) A.P.	b) G.P.	c) H.P.	d) A.P. and	G.P.	
23.	The sum of the first 2					
24	a) 305	b) 325	,	d) 335		
24.	The third term of a G a) 25	b) 625				
25.	The possible outco	,	c) 3125	d) 625 x 25		
20.	a) 5	b) 10	c) 5 ²	111162 12	d) 2 ⁵	
26.	If a, b, c, are A.P. a			•	u) 2	
			c) $a \neq b \neq c$ d):	a = b = c		
27.	e ^{logx} is equal to	,				
	a) x	b) 1	c) e	d) loge ^x		
28.	The number of circul	ar permutation of r	n distinct object is	, 0		
	\ 2	•		d) (n-1)!		
29.	The value of $5P_5$ is	a) 5	b) 25	c) 120	d) 1	
30.	Expansion of $(1 + x)^{-1}$		a) $1 + x + x^2 + x^3$.	d) 1- $x + x^2$		
31.	a) n ² The value of $5P_5$ is a Expansion of $(1 + x)^{-1}$ b) $1 + 2x + 3x^2 + 4x^3 + 4x^3 + 4x^4$ If $a_n = (-1)^{n-1} 2^{n+1}$ the a) -32	c) 1- x - x - x		d) $1-x+x^2-$	· x ³ +	
31.	$a_n = (-1)$ 2 the a) -32	b) 32	c) -64	d) 64		
32.	The intercept of the s	,0)02	c) – 0 x	d) 64		
	a) 2	b) 3		d) $-\frac{1}{2}$		
33.	The equation of straig	,	1/4			
	a) $y = 2x - 7$	b) $y = 7x + 2$	c) $y = -2x + 7$	d) $y = 2x + 7$		
34.	If the straight lines $a_1 x + b_1 y + c_1 = 0$, $a_2 x + b_2 y + c_2 = 0$ are perpendicular, then					
	a) $\frac{a_1}{a_2} = -\frac{b_1}{b_2}$	$\frac{a_1}{a_2} = \frac{b_1}{a_2}$		$a_1 - b$	$\frac{1}{1}$	
	a) a, b,	b) a. b.	c) $a_1 a_2 = -b_1 b_2$	d) $a = \frac{1}{h}$		

35.	The equation of the straight line containing the point (-2, 1) and parallel				
	to $4x - 2y = 3$ a) $y = 2x + 5$ b) $y = 2x + 5$		4		
36.	If the slope of a straight line is $\frac{2}{3}$, then the slope of the line	perpendicular to it, is		
37.	a) $\frac{2}{3}$ b) $-\frac{2}{3}$ If $2x^2 + kxy + 4y^2 = 0$ represents	c) $\frac{3}{2}$ a pair or parallel lines then	$d) - \frac{3}{2}$ $K =$		
		c) $\pm 4\sqrt{2}$			
38.	The line of the diameter of a circle with center $(2, 1)$ and passing through the point $(-2, 1)$ is				
	a) 4 b) 8	c) 4√5	d) 2		
39.	The center of the circle $x^2 + y^2 - 4$				
	a) (-2, 3) b) (2, 3)	c) (-2, -3)	d) (2, -3)		
4 0.	If two circle touch each other exte	ernally then the distance be	ween their centres is		
	If two circle touch each other extends a) $r_1 - r_2$ b) $\frac{r_1}{r_2}$	c) $\frac{r_1}{r_1}$	d) $r_1 + r_2$		
	•	PART - B			
	Note: 1) Answer any ten question any nine questions from the rem		npulsory and choose 10 X 6 = 60		
41.	If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ find k so that A^2	= kA - 2I.			
42.	Prove that $\begin{vmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{vmatrix}^2 = \begin{vmatrix} b^2 + ab \\ ac \end{vmatrix}$	· '	1		
43.	Find the cofactor of each element of the determinant $\begin{vmatrix} 3 & 4 & 1 \\ 0 & -1 & 2 \\ 5 & -2 & 6 \end{vmatrix}$.				
44.	Find the position vector of the po	oints which divide the join o	of the points A and B		
	whose position vectors $\overrightarrow{a} - 2\overrightarrow{b}$ ratio 3:2.	and $2\overline{a} - \overline{b}$ internally a	nd externally in the		
4 5.	Show that the points with position				
	$\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, \overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c}, 4\overrightarrow{a}$				
46.	Show that the vectors $2\vec{i} - \vec{j} +$	$-\vec{k}$, $3\vec{i}$ $-4\vec{j}$ $-4\vec{k}$, \vec{i} $-3\vec{j}$	$-5\vec{k}$ form a right		
47.	angled triangle. If $nC_{4}=nC_{6}$ find $12C_{n}$.				
48.	Find the middle term of the expansion $(3x - \frac{2}{3}x^2)^8$.				
49.	How many different section of 4 books can be made from 10 different books, if (i) there is no restriction (ii) two particular books are always selected.				
50.	(iii) two particular books are never selected. Find 5 geometric means between 576 and 9.				

52. Find the equation of the straight line passing through the point (1, 2) and making intercepts on the coordinate axes which are in the ratio 2:3.

QDR 11 MATHS (E.M) Pg-3

51.

Evaluate by using binomial expansions $\sqrt[3]{1003}$ correct to 2 places of decimals.

- 53. Find the equation of the straight line joining (4, -2) and the intersection of the straight lines 2x y + 7 = 0, x + y 1 = 0.
- 54. Find the equation of the circle if (2, -3) and (3, 1) are the extremities of a diameter.
 - a) Find the equation of the circle concentric with the circle $x^2 + y^2 2x 6y + 4 = 0$ and having radius 7. (OR) b) If $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ find $A^2 7A 2I$.

PART - C

Note: 1) Answer any ten question. 2) Question No. 70 is compulsory and choose any nine questions from the remaining. $10 \times 10 = 100$

56. If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} x & 1 \\ y & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, find x and y.

55.

57. Prove that
$$\begin{vmatrix} a^2 + \lambda & ab & ac \\ ab & b^2 + \lambda & bc \\ ac & bc & c^2 + \lambda \end{vmatrix} = \lambda^2 (a^2 + b^2 + c^2 + \lambda).$$

58. Prove by factor method
$$\begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix} = (a - b) (b - c) (c - a) (ab + bc + ca).$$

59. Prove that
$$\begin{vmatrix} 2bc - a^2 & c^2 & b^2 \\ c^2 & 2ca - b^2 & a^2 \\ b^2 & a^2 & 2ab - c^2 \end{vmatrix} = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^2.$$

- 60. Using vector method, prove that the line segments joining the mid points of the adjacent sides of a quadrilateral taken in order form a parallelogram.
- 61. If ABCD is a quadrilateral and E and F are the mid points of AC and BD respectively, prove that $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4\overrightarrow{EF}$.
- 62. Resolve into partial fractions $\frac{x^2 + x + 1}{x^2 5x + 6}$.
- 63. Prove by mathematical induction 2^{3n} –1 is divisible by 7, for all natural number.
- 64. In the expansion of $(1 + x)^{20}$, the coefficient of r^{th} and $(r + 1)^{th}$ terms are in the ratio 1:6, find the value of r.

65. If x is so large prove that
$$\sqrt[3]{x^2 + 6} - \sqrt[3]{x^3 + 3} = \frac{1}{x^2}$$
 nearly.

66. If a, b, c are in H.P, prove
$$\frac{b+a}{b-a} + \frac{b+c}{b-c} = 2$$

- 67. Find the co-ordinates of orthocenter of the triangle formed by the straight lines $x \hat{y} 5 = 0$, 2x y 8 = 0 and 3x y 9 = 0.
- 68. Show that the equation $3x^2 + 7xy + 2y^2 + 5x + 5y + 2 = 0$ represents straight lines and also find the separate equation of the straight lines.
- 69. Find the equation the circle passing through the points (0, 1), (2, 3) and (-2, 5).
- 70. a) Show that the circle $x^2 + y^2 8x 6y + 21 = 0$, is orthogonal to the circle $x^2 + y^2 2y 15 = 0$. (OR)
 - b) Show that the vectors $\vec{i} 2\vec{j} + 3\vec{k}$, $-2\vec{i} + 3\vec{j} 4\vec{k}$, $-\vec{j} + 2\vec{k}$ are coplanar.