Persistent Technical Paper 2

```
A. Computer Algorithms
    1. Time Complexity
    2. Which of the following cannot be implemented
    efficiently in Linear Linked
    List
    1. Quicksort
    2. Radix Sort
    3. Polynomials
    4. Insertion Sort
    5. Binary Search
    3. In binary search tree, n=nodes, h=height of tree.
    What's complexity?
    1. o(h)
    2. o(n*h)
    3. o(nLogn)
    4. o(n*n)
    5. None
    4.
    5.
B. C Programs
    1. Printf("%d%d",i++,i++);
    1. Compiler Dependent
    2.44
    3.43
    4. }3
    5. None of Above
    2. void main()
    {
    printf("persistent");
    main();
    }
    1. Till stack overflows
    2. Infinite
    3. }6553
    4. }3442
    5. None
    3. Swapping
    4. what does it do?
    void f(int n)
    {
    if(n>0)
    {
    if(A[i]>A[j])
    swap();
}
```

else
$\mathrm{f}(\mathrm{n}-1)$;
\}

1. Swap
2. Sort in Ascending order
3. Sort in Descending order
4. Computes permutation
5.
6. Given a Fibonacci function
$\mathrm{f} 1=1 ; \mathrm{f} 2=1$
$\mathrm{fn}=\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)$ which of the following is true?
7. Every Second element is even
8. Every third element is odd
9. The series increases monotonally
10. For $n>2$, $\mathrm{fn}=\operatorname{ceiling}(1.6 * f(n-1))$
11. None
C. Operating System
12. Where the root dir should be located
13. Anywhere on System disk
14. Anywhere on Disk'
15. In Main memory
16. At a fixed location on Disk
17. At fixed location on System Disk
18. Problem on Concurrency
19. Problem on Round Robin Algorithm
20.
21.

D. General

1. If x is odd, in which of the following y must be even
2. $\mathrm{X}+\mathrm{Y}=5$
3. $2(\mathrm{X}+\mathrm{Y})=7$
4. $2 \mathrm{X}+\mathrm{Y}=6$
5. $\mathrm{X}+2 \mathrm{Y}=7$
6.
7. 1000 ! How many digits? What is the most significant and Least significant
digit
8.
9.
10.

E. Theory

1. If a production is given

S -> 1S1
0S0

11

Then which of the following is invalid 1. 00101010100
2.
3.
4.
5.
2. Context free grammar cannot recognize

1. if-then-else
2. var
3. loops
4. syntax
5. None
6.
7.
8.

F. DBMS

1. If table A has m rows and table B has n rows then
how many rows will the
following query return
SELECT A.A1,B.B1
FROM A,B
WHERE A.A3=B.B3
2. $<=(m * n)$
3. $\mathrm{m}^{*} \mathrm{n}$
4. $<=(m+n)$
5. $>=(\mathrm{m}+\mathrm{n})$ and $<=(\mathrm{m} * \mathrm{n})$
6. $\mathrm{m}+\mathrm{n}$
7. A Query optimizer optimizes according to which of the following criteria
8. Execution time
9. Disk access
10. CPU usage
11. Communication time
12. None
13. Which of the following is not a characteristic of a transaction
14. Atomicity
15. Consistency
16. Normalization
17. Isolation
18. Durability
19. The def. of Foreign key is there to support
20. Referential integrity
21. Constraint
22.
23.
24. None
```
5. Problem
Process A Process B
WRITELOCK(X) WRITELOCK(Y)
READ(X) READ(Y)
.. ..
1. The problem is serializable
2. The problem is not serializable
3. It can be run in parallel
4.
5. None
```

PROGRAMMING SECTION (This consisted of Two programs to be solved in 1 hour.)
A sparse matrix is a matrix in which a node with val $=0$ is not represented. The whole matrix is represented by a Linked list where node typedef struct Node
\{
int row;
int col;
int value;
sparsematrix next;
\} Element, *sparsematrix;
The problem is, if there are two matrix given suppose m 1 and m 2 , then add them and return the resultant sparsematrix.
If suppose there are N functions say from $0,1,2, \ldots \mathrm{~N}-1$ and it's given that $\mathrm{A}[\mathrm{i}][\mathrm{j}]=1$ if the function i contains a call to
func. j otherwise $A[i][j]=0$, then write a function that will form groups of related functions and print them line by line and at the end print the number of total groups

