

B.Tech. Degree III Semester (Supplementary) Examination in formation Technology / Computer Science and Engineering, June 2001 Information Technology

IT/CS 303 ELECTRONIC CIRCUITS AND LOGIC DESIGN (1998 admissions)

me; 3 Hours

Max. Marks: 100

(Answer all questions)

7	•	(into ite) and questions,		
1	a) .	Draw the circuit of an RC coupled amplifier and explain the function of		
		each element in the circuit.	(12)	
	b)	Compare class A, B, AB and C power amplifiers.	(8)	
11	a)	With necessary circuit diagrams and waveforms explain any one non-sinusoidal		
	,	oscillator.	(12)	
	b)	Describe the properties of a negative feedback amplifier.	(8)	
Ш	a)	Explain the working of a UJT relaxation oscillator.	(10)	
	b)	Describe a positive clamper circuit.	(10)	
I۷	a)	OR Explain the principle of Tunnel diode.	(8)	
	b)	Define the following	(10)	
•		(i) CMRR (ii) Drift (iii) Offset (iv) Slew rate.	(12)	
v	a)	Find the value of the base b for the following		
		(i) $(16)_{10} = (100)_b$		
		(ii) $(292)_{10} = (1204)_b$	(6)	
	b)	Convert the following to excess 3 and gray code		
	,	(i) 36		
		(ii) 678	(6)	
	c)	Simplify		
	ŕ	(i) $\overline{A}B + BD + A\overline{B}C\overline{D} + BC$		
		(ii) $(\overline{A} + B + \overline{C})(\overline{A} + B + D + E)(C + D)$	(8)	
			(0)	
321	-)	OR	•	
VI	a)	What is a full subtractor? Design a full subtractor and implement it using	(12)	
	b 3	only NAND gates.	(12)	
	b)	Explain the principle of binary multiplication.	(8)	
VII	a)	Draw a Totem - pole output TTL gate and explain its operation.	(12)	
	b)	Define the following	. ,	
•		(i) fan - in (ii) fan - out (iii) noise margin (iv) current sink. OR	(8)	
VIII	a)	Define a sequential system. How does it differ from a combinational system?	(10)	
	b)	What is a shift register? What are its different types? State applications		
		for each type.	(10)	
īΧ	a)	Define SSI, MSI and LSI. Give examples for each.	(8)	
•	b)	State the advantages of using PLAs in digital circuits. Using PLAs realize	1-7	
	,	the sum and carry out expression of a full adder.	(12)	
		OR ,	•	
X	a)	Define a decoder and a demultiplexer and with the help of necessary		
		diagram explain how a decoder can be converted into a demultiplexer.	(12)	
	b)	What are the advantages and disadvantages of MOSRAM.	(8)	