GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-I & II Remedial Examination Nov/ Dec. 2010

Subject code: 110008 Date: 06/12/2010

Subject Name: Maths- I

Time: 10.30 am – 01.30 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Attempt the following (i) Give the geometrical meaning of LMVT. Using LMVT prove that $0 < \frac{1}{x} cos^{-1} \frac{sinx}{x} < 1$, $x \in [0, \frac{\pi}{2}]$ (ii) If $5x \le f(x) \le 2x^2 + 2$, for all $x \in R$ then find $\lim_{x \to 2} f(x)$ 03 (b) Attempt the following
 - (b) Attempt the following

 (i) Define critical point. If the surface area of a right circular cylinder is given then prove that its height is equal to the diameter of its base when the volume is maximum

(ii) Expand $\sin\left(\frac{\pi}{4} + x\right)$ in powers of x. Hence find the value of $\sin 46^{\circ}$ 03

Q.2 (a) Attempt the following

(i) Write the points of nonexistence of a derivative. Prove that

$$f(x) = \begin{cases} x , & 0 \le x < \frac{1}{2} \\ 1 , & x = \frac{1}{2} \\ 1 - x , & \frac{1}{2} < x \le 1 \end{cases}$$

is discontinuous at $x = \frac{1}{2}$

(ii) Check that the sequence $a_n = \frac{n}{n^n + 1}$ is a decreasing and bounded below. Is it **03** convergent?

(b) (i) Write the different forms of an improper integrals. Check the convergence of 04 an improper integral $\int_5^{\infty} \frac{7x+4}{x^2+9} dx$ using comparison test

(ii) Evaluate $\int_0^1 x^2 dx$ by finding the Riemann sum, by dividing the interval into **03** unequal subparts.

OR

(b) (i) Evaluate $\int_2^3 (x-2) dx$ by using appropriate area formula. If the range is from 0 to 3 then what will happen? (ii) Define improper integral. Find the area of between the curve $y^2 = \frac{x^2}{1-x^2}$ and 04 its asymptotes using improper integral.

Q.3 (a) If
$$u = (x^2 + y^2 + z^2)^{\frac{m}{2}}$$
 then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$ 05

(b) (i) Use Lagrange method of undetermined multipliers to find the shortest distance from the point (1,2,2) to the sphere $x^2 + y^2 + z^2 = 16$ (ii)Find the area of the loop of the curve $y^2 = (x - a)(b - x)^2$, (b > a) 05

1

04

റ	D
.,	к

		OR	
Q.3	(a)	State modified Euler's theorem. If $u = tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$ prove that	05
		$x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 2\cos 3u \sin u$	
	(b)	(i)Find the extreme values of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.	04
		(ii)Find the volume of the solid of revolution of the area bounded by the curve	05
		$y = xe^x$ and the straight lines $x = 1, y = 0$.	
Q.4	(a)	Write the statement of Cauchy's root test. For which values of x does the series	04
		$\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^n x^n$, $x > 0$ is convergent. What can we say at the point $x = 1$.	
	(h)	(i) Find the values of \mathbf{p} for which the series	03
	(0)	$\frac{2}{3} + \frac{3}{4} + \frac{4}{4} + \cdots \infty$ is convergent	00
		1^p 2^p 3^p 3^p 3^n	03
		(ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^n}$	05
	(c)	Evaluate $\iint_{\mathbb{R}} e^{2x+3y} dA$ where R is the triangle bounded by	04
		x = 0, y = 0 and x + y = 1.	
0.4	()	OR	0.4
Q.4	(a)	Write the statement of Cauchy's integral test. Test the convergence of the series	04
		$\sum \frac{1}{(1-a)^{\alpha}}$, for $0 \le a \le 1$.	
		$\sum_{n=2}^{n} n(\log n)^n$	
	(b)	(1) Find the interval of convergence for which the series $\frac{1}{2}$	03
		$x - \frac{3}{2^2} + \frac{3}{3^2} - \frac{3}{4^2} + \cdots = 0$ is convergent.	
		(ii) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\log (n+1)}$	03
	(c)	Evaluate $\iint sin\theta dA$, where R is the region in the first quadrant that is outside	04
		the circle $r = 2$ and inside the cardioids $r = 2(1 + \cos\theta)$.	
Q.5	(a)	Evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dA$ by changing the order of integration.	04
	(b)	(i)Find the directional derivative of the divergence of	04
		$\overline{F}(x, y, z) = xyi + xy^2j + z^2k$ at the point (2,1,2) in the direction of the outer	
		normal to the sphere $x^2 + y^2 + z^2 = 9$	04
		(ii)Use Green's theorem, to evaluate $\oint_c e^{-x} (cosydx - sinydy)$ where C is	04
		the rectangle with vertices $(0,0), (\pi, 0), (\pi, \frac{\pi}{2}), (0, \frac{\pi}{2})$	
	(c)	Use L'Hospital rule to find	02
		$\lim_{x \to \pi/2} \frac{\log \sin x}{(\pi - 2x)^2}$	
		x - x/2 (n - 2x)	
0.5	(a)	Evaluate $\iint \sqrt{r^2 + v^2} dV$ where D is the solid bounded by the surfaces	04
-		$y_D = \sqrt{x^2 + y^2} = z^2 = 0$ $z = 1$	
	(b)	(i) A fluid motion is given by	04
	(~)	$\overline{V} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k$. Is the motion	
		irrotational?. If so, find the velocity potential.	
		(ii)Use divergence theorem to evaluate $\iint_{\mathfrak{S}} (x^3 dy dz + x^2 y dz dx + x^2 z dx dz)$	04
		where S is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$ and the	
		circular discs $z = 0$ and $z = b$	
		Use L'Hospital rule to evaluate	02
		$\lim_{x \to 1} (1-x) \tan\left(\frac{\pi x}{2}\right)$	
