\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-I \& II Remedial Examination Nov/ Dec. 2010

Subject code: 110008
Date: 06/12/2010

Subject Name: Maths- I
 Time: 10.30 am - 01.30 pm

Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Attempt the following
(i) Give the geometrical meaning of LMVT. Using LMVT prove that
(ii) If $5 x \leq f(x) \leq 2 x^{2}+2$, for all $x \in R$ then find $\lim _{x \rightarrow 2} f(x)$
(b) Attempt the following
(i) Define critical point. If the surface area of a right circular cylinder is given then prove that its height is equal to the diameter of its base when the volume is maximum
(ii) Expand $\sin \left(\frac{\pi}{4}+x\right)$ in powers of x. Hence find the value of $\sin 46^{\circ}$
Q. 2 (a) Attempt the following
(i) Write the points of nonexistence of a derivative. Prove that
$f(x)=\left\{\begin{array}{cc}x, & 0 \leq x<\frac{1}{2} \\ 1, & x=\frac{1}{2} \\ 1-x, & \frac{1}{2}<x \leq 1\end{array}\right.$
is discontinuous at $x=\frac{1}{2}$
(ii) Check that the sequence $a_{n}=\frac{n}{n^{2}+1}$ is a decreasing and bounded below. Is it convergent?
(b) (i) Write the different forms of an improper integrals. Check the convergence of an improper integral $\int_{5}^{*} \frac{7 x+4}{x^{2}+9} d x$ using comparison test
(ii) Evaluate $\int_{0}^{1} x^{2} d x$ by finding the Riemann sum, by dividing the interval into unequal subparts.

OR

(b) (i) Evaluate $\int_{2}^{3}(x-2) d x$ by using appropriate area formula. If the range is from 0 to 3 then what will happen?
(ii) Define improper integral. Find the area of between the curve $y^{2}=\frac{x^{2}}{1-x^{2}}$ and its asymptotes using improper integral.
Q. 3 (a) If $u=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{m}{2}}$ then find the value of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}$
(b) (i) Use Lagrange method of undetermined multipliers to find the shortest

OR

Q. 3 (a) State modified Euler's theorem. If $u=\tan ^{-1}\left(\frac{x^{1}+y^{3}}{x-y}\right)$ prove that

$$
x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=2 \cos 3 u \sin u
$$

(b) (i)Find the extreme values of $x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$.
(ii)Find the volume of the solid of revolution of the area bounded by the curve $y=x e^{x}$ and the straight lines $x=1, y=0$.
Q. 4 (a) Write the statement of Cauchy's root test. For which values of x does the series $\sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}\right)^{n} x^{n}, x>0$ is convergent. What can we say at the point $x=1$.
(b) (i) Find the values of p for which the series $\frac{2}{1^{p}}+\frac{3}{2^{p}}+\frac{4}{3^{p}}+\cdots \infty$ is convergent.
(ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{3^{n} n!}{n^{n}}$
(c) Evaluate $\iint_{R} e^{2 x+3 y} d A$ where R is the triangle bounded by
$x=0, y=0$ and $x+y=1$.

OR

Q. 4 (a) Write the statement of Cauchy's integral test. Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{a}}, \quad$ for $0 \leq a \leq 1$.
(b) (i) Find the interval of convergence for which the series $x-\frac{x^{2}}{2^{2}}+\frac{x^{3}}{3^{2}}-\frac{x^{4}}{4^{2}}+\cdots \infty$ is convergent.
(ii) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\log (n+1)}$
(c) Evaluate $\iint_{R} \sin \theta d A$, where R is the region in the first quadrant that is outside the circle $r=2$ and inside the cardioids $r=2(1+\cos \theta)$.
Q. 5 (a) Evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d A$ by changing the order of integration.
(b) (i)Find the directional derivative of the divergence of
$\bar{F}(x, y, z)=x y i+x y^{2} j+z^{2} k$ at the point $(2,1,2)$ in the direction of the outer normal to the sphere $x^{2}+y^{2}+z^{2}=9$
(ii)Use Green's theorem, to evaluate $\oint_{C} e^{-x}(\cos y d x-\sin y d y)$ where C is the rectangle with vertices $(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$.
(c) Use L'Hospital rule to find
$\lim _{x \rightarrow \pi / 2} \frac{\log \sin x}{(\pi-2 x)^{2}}$

OR

Q. 5 (a) Evaluate $\iiint_{D_{2}} \sqrt{x^{2}+y^{2}} d V$, where D is the solid bounded by the surfaces
$x^{2}+y^{2}=z^{2}, z=0, z=1$.
(b) (i) A fluid motion is given by
$\bar{V}=(y \sin z-\sin x) i+(x \sin z+2 y z) j+\left(x y \cos z+y^{2}\right) k$. Is the motion irrotational?. If so, find the velocity potential.
(ii)Use divergence theorem to evaluate $\iint_{5}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d z\right)$
where S is the closed surface consisting of the cylinder $x^{2}+y^{2}=a^{2}$ and the circular discs $z=0$ and $z=b$
Use L'Hospital rule to evaluate
$\lim _{x \rightarrow 1}(1-x) \tan \left(\frac{\pi x}{2}\right)$

