Q.1 - Q.20 Carry One Mark Each

1. If *E* denotes expectation, the variance of a random variable *X* is given by

(A)
$$E[X^2] - E^2[X]$$

(B)
$$E[X^2] + E^2[X]$$

(C)
$$E[X^2]$$

(D)
$$E^2 \lceil X \rceil$$

2. The following plot shows a function y which varies linearly with x. The value of the integral $I = \int_{1}^{2} y \ dx$ is

- (A) 1.0
- (B) 2.5
- (C) 4.0
- (D)5.0

- 3. For $|x| \ll 1$, $\coth(x)$ can be approximated as
 - (A) x
- (B) x^2
- (C) $\frac{1}{x}$
- (D) $\frac{1}{x^2}$

- 4. $\lim_{\theta \to 0} \frac{\sin(\theta/2)}{\theta} \text{ is}$
 - (A) 0.5
- (B) 1

- (C) 2
- (D) not defined
- 5. Which one of the following functions is strictly bounded?

(A)
$$\frac{1}{x^2}$$

(B) e^x

(C) x^2

(D) e^{-x^2}

- 6. For the function e^{-x} , the linear approximation around x = 2 is:
 - (A) $(3-x)e^{-2}$

- (B) 1 x
- (C) $[3 + 2\sqrt{2} (1 + \sqrt{2})x]e^{-2}$

- (D) e^{-2}
- 7. An independent voltage source in series with an impedance $Z_s = R_s + jX_s$ delivers a maximum average power to a load impedance Z_L when
 - (A) $Z_L = R_S + jX_S$

(B) $Z_L = R_s$

(C) $Z_L = jX_S$

(D) $Z_L = R_s - jX_s$

8. The RC circuit shown in the figure is

(A) a low-pass filter

(B) a high-pass filter

(C) a band-pass filter

- (D) a band-reject filter
- 9. The electron and hole concentrations in an intrinsic semiconductor are n_i per cm^3 at 300 K. Now, if acceptor impurities are introduced with a concentration of N_A per cm^3 (where $N_A >> n_i$), the electron concentration per cm^3 at 300 K will be:
 - (A) n_i
- (B) $n_i + N_A$
- (C) $N_A n_i$
- (D) $\frac{n_i^2}{N_A}$
- 10. In a p^+n junction diode under reverse bias, the magnitude of electric field is maximum at
 - (A) the edge of the depletion region on the p-side
 - (B) the edge of the depletion region on the n-side
 - (C) the p^+n junction
 - (D) the centre of the depletion region on the n-side
- 11. The correct full wave rectifier circuit is:

- 12. In a transconductance amplifier, it is desirable to have
 - (A) a large input resistance and a large output resistance
 - (B) a large input resistance and a small output resistance
 - (C) a small input resistance and a large output resistance
 - (D) a small input resistance and a small output resistance
- X = 01110 and Y = 11001 are two 5-bit binary numbers represented in two's 13. complement format. The sum of X and Y represented in two's complement format using 6 bits is:
 - (A) 100111
- (B) 001000
- (C) 000111
- (D) 101001
- The Boolean function Y = AB + CD is to be realized using only 2-input NAND 14. gates. The minimum number of gates required is:
 - (A) 2

- (B) 3
- (C) 4
- (D)5
- 15. If the closed-loop transfer function of a control system is given as

$$T(s) = \frac{s-5}{(s+2)(s+3)}$$
, then it is

(A) an unstable system

- (B) an uncontrollable system
- (C) a minimum phase system
- (D) a non-minimum phase system
- If the Laplace transform of a signal y(t) is $Y(s) = \frac{1}{s(s-1)}$, then its final value is: 16.
 - (A) -1
- (B) 0

- (C) 1
- (D) unbounded
- 17. If $R(\tau)$ is the autocorrelation function of a real, wide-sense stationary random process, then which of the following is NOT true?
- (A) $R(\tau) = R(-\tau)$ (B) $|R(\tau)| \le R(0)$ (C) $R(\tau) = -R(-\tau)$

	(D) The mean square value of the process is $R(0)$	
18.	If $S(f)$ is the power spectral density of a real, wide-sense stationary random process, then which of the following is ALWAYS true?	
	(A) $S(0) \ge S(f)$ (B) $S(f) \ge 0$	(C) $S(-f) = -S(f)$ (D) $\int_{-\infty}^{\infty} S(f) df = 0$
19.	A plane wave of wavelength λ is traveling in a direction making an angle 30° with positive x-axis and 90° with positive y-axis. The \vec{E} field of the plane wave can be represented as $(E_o$ is constant)	
	(A) $\vec{E} = \hat{y}E_0e^{j\left(\omega t - \frac{\sqrt{3}\pi}{\lambda}x - \frac{\pi}{\lambda}z\right)}$	(B) $\vec{E} = \hat{y}E_0e^{j\left(\omega t - \frac{\pi}{\lambda}z - \frac{\sqrt{3}\pi}{\lambda}z\right)}$
	(C) $\vec{E} = \hat{y}E_0e^{j\left(\omega t + \frac{\sqrt{3}\pi}{\lambda}x + \frac{\pi}{\lambda}z\right)}$	(B) $\vec{E} = \hat{y}E_0e^{j\left(\omega t - \frac{\pi}{\lambda}z - \frac{\sqrt{3}\pi}{\lambda}z\right)}$ (D) $\vec{E} = \hat{y}E_0e^{j\left(\omega t - \frac{\pi}{\lambda}z + \frac{\sqrt{3}\pi}{\lambda}z\right)}$
20.	If C is a closed curve enclosing a surface S, then the magnetic field intensity \vec{H} ,	
	the current density $ec{J}$ and the electric flux density $ec{D}$ are related by	
	(A) $\iint_{S} \vec{H} \cdot d\vec{s} = \oint_{C} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{l}$ (B) $\int_{C} \vec{H} \cdot d\vec{l} = \oiint_{S} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} d \right) \cdot d\vec{s}$	

Q.21 - Q.75 Carry Two Marks Each

21. It is given that $X_1, X_2, ..., X_M$ are M non-zero, orthogonal vectors. The dimension of the vector space spanned by the 2M vectors $X_1, X_2, ..., X_M, -X_1, -X_2, ... - X_M$ is:

(A) 2M (B) M + 1

(C) $\oiint \vec{H}.\vec{ds} = \iint \vec{J} + \frac{\partial \vec{D}}{\partial t} .\vec{dl}$

(D) dependent on the choice of $X_1, X_2, ... X_M$

22. Consider the function $f(x) = x^2 - x - 2$. The maximum value of f(x) in the closed interval [-4,4] is:

(A) 18

(B) 10

(C) -2.25

(D) indeterminate

(D) $\oint_{-\vec{L}} \vec{H} \cdot d\vec{l} = \iint_{c} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{s}$

23. An examination consists of two papers, Paper 1 and Paper 2. The probability of failing in Paper 1 is 0.3 and that in Paper 2 is 0.2. Given that a student has failed in Paper 2, the probability of failing in Paper 1 is 0.6. The probability of a student failing in both the papers is:

- (A) 0.5
- (B) 0.18
- (C) 0.12
- (D)0.06

- The solution of the differential equation $k^2 \frac{d^2y}{dx^2} = y y_2$ under the boundary 24. conditions (i) $y=y_1$ at x=0 and (ii) $y=y_2$ at $x=\infty$, where k,y_1 and y_2 are constants, is
 - (A) $y = (y_1 y_2) \exp(-x/k^2) + y_2$ (B) $y = (y_2 y_1) \exp(-x/k) + y_1$

 - (C) $y = (y_1 y_2) \sinh(x/k) + y_1$ (D) $y = (y_1 y_2) \exp(-x/k) + y_2$
- The equation $x^3 x^2 + 4x 4 = 0$ is to be solved using the Newton-Raphson 25. method. If x = 2 is taken as the initial approximation of the solution, then the next approximation using this method will be:
 - (A) $\frac{2}{3}$
- (B) $\frac{4}{3}$
- (C) 1
- 26. Three functions $f_1(t)$, $f_2(t)$ and $f_3(t)$, which are zero outside the interval [0,T], are shown in the figure. Which of the following statements is correct?

- (A) $f_{1}\left(t\right)$ and $f_{2}\left(t\right)$ are orthogonal
- (B) $f_1(t)$ and $f_3(t)$ are orthogonal
- (C) $f_2(t)$ and $f_3(t)$ are orthogonal
- (D) $f_{1}\left(t\right)$ and $f_{2}\left(t\right)$ are orthonormal

27. If the semi-circular contour D of radius 2 is as shown in the figure, then the value of the integral $\oint_D \frac{1}{(s^2-1)} ds$ is:

- (A) jπ
- (B) -jπ
- (C) -π
- (D)π
- 28. Two series resonant filters are as shown in the figure. Let the 3-dB bandwidth of Filter 1 be B_1 and that of Filter 2 be B_2 . The value of $\frac{B_1}{B_2}$ is:

(A) 4

(B) 1

- (C) $\frac{1}{2}$
- (D) $\frac{1}{4}$
- 29. For the circuit shown in the figure, the Thevenin voltage and resistance looking into X-Y are:

- (A) $\frac{4}{3}V$, 2Ω
- (B) $4V, \frac{2}{3}\Omega$
- (C) $\frac{4}{3}V, \frac{2}{3}\Omega$
- (D)4V, 2Ω

30. In the circuit shown, V_C is 0 volts at t=0 sec. For t>0, the capacitor current $i_c(t)$, where t is in seconds, is given by

(A) 0.50 exp(-25t) mA

(B) 0.25 exp(-25t) mA

(C) 0.50 exp(-12.5t) mA

- (D) 0.25 exp (-6.25t) mA
- 31. In the AC network shown in the figure, the phasor voltage V_{AB} (in Volts) is:

(A) 0

- (B) 5∠30°
- (C) 12.5∠30°
- (D) 17∠30°
- 32. A p^+n junction has a built-in potential of 0.8 V. The depletion layer width at a reverse bias of 1.2V is 2 μ m. For a reverse bias of 7.2 V, the depletion layer width will be:
 - (A) 4 μm
- (B) 4.9 µm
- (C) 8 µm
- (D) 12 µm
- 33. Group I lists four types of p-n junction diodes. Match each device in Group I with one of the option in Group II to indicate the bias condition of that device in its normal mode of operation.

Group I

Group II

- (P) Zener Diode
- (1) Forward bias
- (Q) Solar cell
- (2) Reverse bias
- (R) LASER diode
- (S) Avalanche Photodiode
- (A) P 1 Q 2 R 1 S 2
- (B) P 2 Q 1 R 1 S 2
- (C) P 2 Q 2 R 1 S 1
- (D) P 2 Q 1 R 2 S 2

- The DC current gain (β) of a BJT is 50. Assuming that the emitter injection 34. efficiency is 0.995, the base transport factor is:
 - (A) 0.980
- (B) 0.985
- (C) 0.990
- (D) 0.995

(D) 0.5 V

35. Group I lists four different semiconductor devices. Match each device in Group I with its characteristic property in Group II.

Group I

Group II

- (P) BJT
- (1) Population inversion
- (Q) MOS capacitor (2) Pinch-off voltage
- (R) LASER diode
- (3) Early effect
- (S) JFET
- (4) Flat-band voltage
- (A) P 3 O - 1
- O 4 (B) P - 1 S - 2
- Q 4 R 1 S - 2 (C) P - 3
- (D) P 3Q - 2 R - 1 S - 4
- 36. For the Op-Amp circuit shown in the figure,

For the BJT circuit shown, assume that the β of the transistor is very large and 37. $V_{BF} = 0.7V$. The mode of operation of the BJT is:

- (A) cut-off
- (B) saturation
- (C) normal active (D) reverse active
- 38. In the Op-Amp circuit shown, assume that the diode current follows the equation $I = I_s \exp(V/V_T)$. For $V_i = 2V$, $V_o = V_{o1}$, and for $V_i = 4V$, $V_o = V_{o2}$. The relationship between V_{o1} and V_{o2} is:

(A) $V_{o2} = \sqrt{2}V_{o1}$

(C) $V_{02} = V_{01} \ln 2$

- In the CMOS inverter circuit shown, if the transconductance parameters of the 39. NMOS and PMOS transistors are $k_n = k_p = \mu_n C_{ox} \frac{W_n}{L_n} = \mu_p C_{ox} \frac{W_p}{L_p} = 40 \,\mu\text{A}/V^2$ and their threshold voltages are $V_{THn} = V_{THp} = 1V$, the current I is:

40. For the Zener diode shown in the figure, the Zener voltage at knee is 7V, the knee current is negligible and the Zener dynamic resistance is 10Ω . If the input voltage (V_i) range is from 10 to 16V, the output voltage (V_0) ranges from

(A) 7.00 to 7.29 V

(B) 7.14 to 7.29 V

(C) 7.14 to 7.43 V

(D) 7.29 to 7.43 V

41. The Boolean expression $Y = \overline{A} \ \overline{B} \ \overline{C} \ D + \overline{A} \ B \ \overline{C} \ \overline{D} + A \ \overline{B} \ \overline{C} \ D + A \ B \ \overline{C} \ \overline{D}$ can be minimized to

(A)
$$Y = \overline{A} \overline{B} \overline{C} D + \overline{A} B \overline{C} + A \overline{C} D$$

(B)
$$Y = \overline{A} \overline{B} \overline{C} D + B C \overline{D} + A \overline{B} \overline{C} D$$

(C)
$$Y = \overline{A} B C \overline{D} + \overline{B} \overline{C} D + A \overline{B} \overline{C} D$$

(D)
$$Y = \overline{A} B C \overline{D} + \overline{B} \overline{C} D + A B \overline{C} \overline{D}$$

42. The circuit diagram of a standard TTL NOT gate is shown in the figure. When $V_i = 2.5V$, the modes of operation of the transistors will be:

- (A) Q_1 :reverse active; Q_2 :normal active; Q_3 :saturation; Q_4 :cut-off
- (B) Q_1 :reverse active; Q_2 :saturation; Q_3 :saturation; Q_4 :cut-off
- (C) Q_1 :normal active; Q_2 :cut-off; Q_3 :cut-off; Q_4 : saturation
- (D) Q_1 :saturation; Q_2 :saturation; Q_3 :saturation; Q_4 : normal active
- 43. In the following circuit, X is given by

_

(A)
$$X = A \overline{B} \overline{C} + \overline{A} B \overline{C} + \overline{A} \overline{B} C + A B C$$

(B)
$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + \overline{A} \overline{B} \overline{C}$$

(C)
$$X = AB + BC + AC$$

(D)
$$X = \overline{A} \overline{B} + \overline{B} \overline{C} + \overline{A} \overline{C}$$

44. The following binary values were applied to the X and Y inputs of the NAND latch shown in the figure in the sequence indicated below:

$$X = 0, Y = 1;$$
 $X = 0, Y = 0;$ $X = 1, Y = 1.$

The corresponding stable P, Q outputs will be:

(A)
$$P = 1$$
, $Q = 0$; $P = 1$, $Q = 0$ or $P = 0$, $Q = 1$

(B)
$$P = 1$$
, $Q = 0$; $P = 0$, $Q = 1$; or $P = 0$, $Q = 1$; $P = 0$, $Q = 1$

(C)
$$P = 1$$
, $Q = 0$; $P = 1$, $Q = 1$; $P = 1$, $Q = 0$ or $P = 0$, $Q = 1$

(D)
$$P = 1$$
, $Q = 0$; $P = 1$, $Q = 1$; $P = 1$, $Q = 1$

45. For the circuit shown, the counter state (Q_1Q_0) follows the sequence

46. An 8255 chip is interfaced to an 8085 microprocessor system as an I/O mapped I/O as shown in the figure. The address lines A_0 and A_1 of the 8085 are used by the 8255 chip to decode internally its three ports and the Control register. The

address lines A_3 to A_7 as well as the IO/\overline{M} signal are used for address decoding. The range of addresses for which the 8255 chip would get selected is:

- (A) F8H FBH
- (B) F8H FCH
- (C) F8H FFH
- (D) F0H F7H
- The 3-dB bandwidth of the low-pass signal $e^{-t}u(t)$, where u(t) is the unit step 47. function, is given by
 - (A) $\frac{1}{2\pi}Hz$
- (B) $\frac{1}{2\pi}\sqrt{\sqrt{2}-1} \ Hz$ (C) ∞
- (D)1 Hz

- 48. A Hilbert transformer is a
 - (A) non-linear system
 - (C) time-varying system

- (B) non-causal system
- (D) low-pass system
- 49. The frequency response of a linear, time-invariant system is given by $H(f) = \frac{5}{1+i10\pi f}$. The step response of the system is:

(B) $5\left(1-e^{-\frac{t}{5}}\right)u(t)$

- (D) $\frac{1}{5} \left(1 e^{-\frac{t}{5}} \right) u(t)$
- A 5-point sequence x[n] is given as 50.

$$x[-3] = 1, x[-2] = 1, x[-1] = 0, x[0] = 5, x[1] = 1.$$

Let $X\left(e^{j\omega}\right)$ denote the discrete-time Fourier transform of x[n]. The value of $\int_{-\infty}^{\infty} X(e^{j\omega})d\omega \text{ is:}$

(A) 5

- (B) 10π
- (C) 16π
- (D)5 + j10 π

- The z-transform X[z] of a sequence x[n] is given by $X[z] = \frac{0.5}{1 2z^{-1}}$. It is given 51. that the region of convergence of X[z] includes the unit circle. The value of x[0]is:
 - (A) -0.5
- (B) 0

- (C) 0.25
- (D)0.5
- 52. A control system with a PD controller is shown in the figure. If the velocity error constant $K_v = 1000$ and the damping ratio $\zeta = 0.5$, then the values of K_P and K_D are:

(A) $K_P = 100, K_D = 0.09$

(B) $K_P = 100, K_D = 0.9$

(C) $K_P = 10, K_D = 0.09$

- The transfer function of a plant is $T(s) = \frac{5}{(s+5)(s^2+s+1)}$. The second-order 53. approximation of T(s) using dominant pole concept is:
 - (A) $\frac{1}{(s+5)(s+1)}$ (B) $\frac{5}{(s+5)(s+1)}$ (C) $\frac{5}{s^2+s+1}$ (D) $\frac{1}{s^2+s+1}$

- The open-loop transfer function of a plant is given as $G(s) = \frac{1}{s^2 1}$. If the plant is 54. operated in a unity feedback configuration, then the lead compensator that an stabilize this control system is:
 - (A) $\frac{10(s-1)}{s+2}$ (B) $\frac{10(s+4)}{s+2}$ (C) $\frac{10(s+2)}{s+10}$ (D) $\frac{2(s+2)}{s+10}$

- A unity feedback control system has an open-loop transfer function 55. $G(s) = \frac{K}{s(s^2 + 7s + 12)}$. The gain K for which s = -1 + j1 will lie on the root locus
 - of this system is:
 - (A) 4

- (B) 5.5
- (C) 6.5
- (D) 10

56. The asymptotic Bode plot of a transfer function is as shown in the figure. The transfer function G(s) corresponding to this Bode plot is:

(A) $\frac{1}{(s+1)(s+20)}$

(B) $\frac{1}{s(s+1)(s+20)}$

(C) $\frac{100}{s(s+1)(s+20)}$

- (D) $\frac{100}{s(s+1)(1+0.05s)}$
- 57. The state space representation of a separately excited DC servo motor dynamics is given as

$$\begin{bmatrix} \frac{d\omega}{dt} \\ \frac{di_a}{dt} \\ \frac{d}{dt} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & -10 \end{bmatrix} \begin{bmatrix} \omega \\ i_a \end{bmatrix} + \begin{bmatrix} 0 \\ 10 \end{bmatrix} u$$

(A)
$$\frac{10}{s^2 + 11s + 11}$$
 (B) $\frac{1}{s^2 + 11s + 11}$

(B)
$$\frac{1}{s^2 + 11s + 11}$$
 (C) $\frac{10s + 10}{s^2 + 11s + 11}$ (D) $\frac{1}{s^2 + s + 1}$

- 58. In delta modulation, the slope overload distortion can be reduced by
 - (A) decreasing the step size
- (B) decreasing the granular noise
- (C) decreasing the sampling rate
- (D) increasing the step size
- 59. The raised cosine pulse p(t) is used for zero ISI in digital communications. The expression for p(t) with unity roll-off factor is given by $p(t) = \frac{\sin 4\pi Wt}{4\pi Wt \left(1 16W^2t^2\right)}$.

The value of p(t) at $t = \frac{1}{4W}$ is:

- (A) -0.5
- (B) 0

- (C) 0.5
- (D)∞

60. In the following scheme, if the spectrum M(f) of m(t) is as shown, then the spectrum Y(f) of y(t) will be: $\cos(2\pi Bt)$

M(f) M(f)

- 61. During transmission over a certain binary communication channel, bit errors occurs independently with probability p. The probability of AT MOST one bit in error in a block of p bits is given by
 - (A) p^n

(B) $1 - p^n$

(C) $np(1-p)^{n-1}+(1-p)^n$

- (D) $1 (1 p)^n$
- 62. In a GSM system, 8 channels can co-exist in 200 KHz bandwidth using TDMA. A GSM based cellular operator is allocated 5 MHz bandwidth. Assuming a frequency reuse factor of $\frac{1}{5}$, i.e. a five-cell repeat pattern, the maximum number of simultaneous channels that can exist in one cell is:
 - (A) 200
- (B) 40
- (C) 25
- (D)5
- 63. In a Direct Sequence CDMA system the chip rate is 1.2288×10^6 chips per second. If the processing gain is desired to be AT LEAST 100, the data rate
 - (A) must be less than or equal to 12.288 $\times 10^3\,$ bits per sec
 - (B) must be greater than 12.288×10^3 bits per sec

64. An air-filled rectangular waveguide has inner dimensions of 3 cm \times 2 cm. The wave impedance of the TE_{20} mode of propagation in the waveguide at a frequency of 30 GHz is (free space impedance $\eta_0 = 377\Omega$)

(A) 308 Ω

(B) 355 Ω

(C) 400Ω

(D)461 Ω

65. The \vec{H} field (in A/m) of a plane wave propagating in free space is given by

$$\vec{H} = \hat{x} \frac{5\sqrt{3}}{\eta_0} \cos(\omega t - \beta z) + \hat{y} \frac{5}{\eta_0} \sin(\omega t - \beta z + \frac{\pi}{2}).$$

The time average power flow density in Watts is:

(A) $\frac{\eta_0}{100}$

(B) $\frac{100}{\eta_0}$

(C) $50\eta_0^2$

(D) $\frac{50}{\eta_0}$

66. The \vec{E} field in a rectangular waveguide of inner dimensions a \times b is given by

$$\vec{E} = \frac{\omega \mu}{h^2} \left(\frac{\pi}{a} \right) H_0 \sin \left(\frac{2\pi x}{a} \right)^2 \sin \left(\omega t - \beta z \right) \hat{y}$$

Where H_0 is a constant, and a and b are the dimensions along the x-axis and the y-axis respectively. The mode of propagation in the waveguide is:

(A) TE_{20}

(B) TM_{11}

(C) TM_{20}

(D) TE_{10}

67. A load of 50Ω is connected in shunt in a 2-wire transmission line of $Z_0 = 50\Omega$ as shown in the figure. The 2-port scattering parameter matrix (S-matrix) of the shunt element is:

(A) $\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$

(B)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(C) $\begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$

(D)
$$\begin{bmatrix} \frac{1}{4} & -\frac{3}{4} \\ -\frac{3}{4} & \frac{1}{4} \end{bmatrix}$$

The parallel branches of a 2-wire transmission line are terminated in 100Ω and 200Ω resistors as shown in the figure. The characteristic impedance of the line is $Z_0 = 50\Omega$ and each section has a length of $\frac{\lambda}{4}$. The voltage reflection coefficient Γ at the input is:

- (A) $-j\frac{7}{5}$
- (B) $\frac{-5}{7}$
- (C) $j\frac{5}{7}$
- (D) $\frac{5}{7}$
- 69. A $\frac{\lambda}{2}$ dipole is kept horizontally at a height of $\frac{\lambda_0}{2}$ above a perfectly conducting infinite ground plane. The radiation pattern in the plane of the dipole $(\vec{E} \text{ plane})$ looks approximately as

(A)

(B)

(C)

(D)

70. A right circularly polarized (RCP) plane wave is incident at an angle of 60° to the normal, on an air-dielectric interface. If the reflected wave is linearly polarized, the relative dielectric constant ε_{r2} is:

Common Data Questions

Common Data for Questions 71, 72, 73:

The figure shows the high-frequency capacitance-voltage (C-V) characteristics of a Metal/Si O_2 /silicon (MOS) capacitor having an area of $1\times 10^{-4}cm^2$. Assume that the permittivities $(\varepsilon_0\varepsilon_r)$ of silicon and Si O_2 are 1×10^{-12} F/cm and 3.5×10^{-13} F/cm respectively.

- 71. The gate oxide thickness in the MOS capacitor is:
 - (A) 50 nm
- (B) 143 nm
- (C) 350 nm
- (D)1 µm

- 72. The maximum depletion layer width in silicon is
 - (A) 0.143 μm
- (B) 0.857 μm
- (C) 1 µm
- (D) 1.143 µm
- 73. Consider the following statements about the C-V characteristics plot:
 - S1: The MOS capacitor has an n-type substrate.
 - S2: If positive charges are introduced in the oxide, the C-V plot will shift to the left.

Then which of the following is true?

- (A) Both S1 and S2 are true
- (B) S1 is true and S2 is false
- (C) S1 is false and S2 is true
- (D) Both S1 and S2 are false

Common Data for Questions 74, 75:

Two 4-ray signal constellations are shown. It is given that ϕ_1 and ϕ_2 constitute an orthonormal basis for the two constellations. Assume that the four symbols in both the constellations are equiprobable. Let $\frac{N_0}{2}$ denote the power spectral density of white Gaussian noise.

- 74. The ratio of the average energy of Constellation 1 to the average energy of Constellation 2 is:
 - (A) $4a^2$
- (B) 4

- (C) 2
- (D)8
- 75. If these constellations are used for digital communications over an AWGN channel, then which of the following statements is true?
 - (A) Probability of symbol error for Constellation 1 is lower
 - (B) Probability of symbol error for Constellation 1 is higher
 - (C) Probability of symbol error is equal for both the constellations
 - (D) The value of N_0 will determine which of the two constellations has a lower probability of symbol error.

Linked Answer Questions: Q.76 to Q.85 Carry Two Marks Each

Statement for Linked Answer Questions 76 & 77:

Consider the Op-Amp circuit shown in the figure.

The transfer function $V_o(s)/V_i(s)$ is: 76.

(A)
$$\frac{1-sRC}{1+sRC}$$
 (B) $\frac{1+sRC}{1-sRC}$ (C) $\frac{1}{1-sRC}$ (D) $\frac{1}{1+sRC}$

(B)
$$\frac{1 + sRC}{1 - sRC}$$

(C)
$$\frac{1}{1-sRC}$$

(D)
$$\frac{1}{1 + sRC}$$

If $V_i = V_1 \sin(\omega t)$ and $V_o = V_2 \sin(\omega t + \phi)$, then the minimum and maximum values 77. of ϕ (in radians) are respectively

(A)
$$\frac{-\pi}{2}$$
 and $\frac{\pi}{2}$ (B) 0 and $\frac{\pi}{2}$ (C) $-\pi$ and 0 (D) $\frac{-\pi}{2}$ and 0

(B) 0 and
$$\frac{\pi}{2}$$

(C)
$$-\pi$$
 and 0

(D)
$$\frac{-\pi}{2}$$
 and 0

Statement for Linked Answer Questions 78 & 79:

An 8085 assembly language program is given below.

MVI A, B5H Line 1:

> 2: MVI B, 0EH

3: XRI 69H

4: ADD B

5: ANI 9BH

6: CPI 9FH

7: STA 3010H

HLT 8:

79. After execution of line of the program, the status of the CY and Z flags will be

(A)
$$CY = 0, Z \neq 0$$

(B)
$$CY = 0, Z = 1$$

(A)
$$CY = 0$$
, $Z \neq 0$ (B) $CY = 0$, $Z = 1$ (C) $CY = 1$, $Z = 0$ (D) $CY = 1$, $Z = 1$

$$(D)CY = 1, Z = 1$$

Statement for Linked Answer Questions 80 & 81:

Consider a linear system whose state space representation is $\dot{x}(t) = Ax(t)$. If the initial state vector of the system is $x(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, then the system response is $x(t) = \begin{bmatrix} e^{-2t} \\ -2e^{-2t} \end{bmatrix}$.

If the initial state vector of the system changes to $x(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then the system response becomes $x(t) = \begin{vmatrix} e^{-t} \\ -e^{-t} \end{vmatrix}$.

80. The eigenvalue and eigenvector pairs (λ_i, v_i) for the system are

(A)
$$\left(-1,\begin{bmatrix}1\\-1\end{bmatrix}\right)$$
 and $\left(-2,\begin{bmatrix}1\\-2\end{bmatrix}\right)$

(B)
$$\left(-1,\begin{bmatrix}1\\-1\end{bmatrix}\right)$$
 and $\left(2,\begin{bmatrix}1\\-2\end{bmatrix}\right)$

(C)
$$\left(-1, \begin{bmatrix} 1 \\ -1 \end{bmatrix}\right)$$
 and $\left(-2, \begin{bmatrix} 1 \\ -2 \end{bmatrix}\right)$

(D)
$$\left(-2, \begin{bmatrix} 1 \\ -1 \end{bmatrix}\right)$$
 and $\left(1, \begin{bmatrix} 1 \\ -2 \end{bmatrix}\right)$

81. The system matrix A is:

(A)
$$\begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$$

(A)
$$\begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$

(C)
$$\begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$(D)\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

Statement for Linked Answer Questions 82 & 83:

An input to a 6-level quantizer has the probability density function f(x) as shown in the figure. Decision boundaries of the quantizer are chosen so as t maximize the entropy of the quantizer output. It is given that 3 consecutive decision boundaries are '-1', '0' and **`**1′.

82. The values of a and b are:

(A)
$$a = \frac{1}{6}$$
 and $b = \frac{1}{12}$

(B)
$$a = \frac{1}{5}$$
 and $b = \frac{3}{40}$

(C)
$$a = \frac{1}{4}$$
 and $b = \frac{1}{16}$

(D)
$$a = \frac{1}{3}$$
 and $b = \frac{1}{24}$

83. Assuming that the reconstruction levels of the quantizer are the mid-points of the decision boundaries, the ratio of signal power to quantization noise power is:

(A)
$$\frac{152}{9}$$

(B)
$$\frac{64}{3}$$

(C)
$$\frac{76}{3}$$

Statement for Linked Answer Questions 84 & 85:

In the Digital-to-Analog converter circuit shown in the figure below, $V_R=10~{\rm V}$ and $R=10k\Omega$.

- 84. The current i is:
 - (A) $31.25 \mu A$
- (B) 62.5 μA
- (C) 125 µA
- (D) 250 μA

- 85. The voltage V_o is:
 - (A) -0.781 V
- (B) -1.562 V
- (C) -3.125 V
- (D)-6.250 V