Roll No.

Total No. of Questions: 09] Paper ID [EC208]

[Total No. of Pages: 02

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Semester - 4th)

ELECTROMAGNETIC FIELD THEORY (EC - 208)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

Q1)

 $(10 \times 2 = 20)$

- a) Define electric field intensity and electric flux density.
- b) State Ampere's law of forces.
- c) What do you mean by displacement current.
- d) Define Skin Depth.
- e) What is surface impedance.
- f) Define Reflection coefficient.
- g) How the electromagnetic waves propagate through the wave guide.
- h) What do you mean by TEM waves?
- i) Why em waves are also called as guided waves?
- j) What are Smith charts?

Section - B

 $(4 \times 5 = 20)$

- Q2) Derive an eqn. of continuity for (a) Static fields, (b) Time varying fields.
- Q3) Deduce the Maxwell's eqns. for sinusoidally time varying fields.

- Q4) An ideal lossless transmission line of $Z_0 = 60 \Omega$ is connected to unknown Z_L . If SWR = 4, find Z_L , reflection coefficient, transmission coefficient.
- Q5) The measured phase velocity of the dielectric medium is 186 x 10⁶ m/s. at t₁ and 223 x 10⁶ m/s at t₂. Find refractive index at two frequencies.
- Q6) Discuss the propagation characteristics of TE and TM waves.

Section - C

 $(2 \times 10 = 20)$

- Q7) Write down the Maxwell's equations in differential and integeral form. Give the physical interpretation of Maxwell's equations.
- **Q8)** (a) Verify that Ey = $f_1(x-V_0t)$ is a solution of $\frac{\partial^2 Ey}{\partial x^2} = \mu \in \frac{\partial^2 Ey}{\partial t^2}$.
 - (b) Starting with Maxwell's equations derive the wave eqn for \overrightarrow{E} and \overrightarrow{H} in free space.
- Q9) (a) The transmission line of characteristic impedance of 50Ω is terminated with a load of $100 + j 100\Omega$. Find the reflection coefficient and SWR.
 - (b) Differentiate between linear, elliptical and circular polarization.