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IAI CT6 0508
Q1)
(i) What is a saddle point? (D)
(i1)) Which strategy can be used in a game in which there is no saddle point? 2)
(iii)) For what values of X and y does the matrix given below have a saddle point? 5)
4 7 6
3 2y
X 5 8
[8]
Q2)
Time plot of a time series shows a linear trend.
(i) Explain how a linear trend can arise from the following models
a) a linear function of time plus a stationary process, (D
b) cumulative sum of a stationary process with non-zero mean. (D)
(i1) Describe two ways to remove linear trend from a time series. 2)
[4]
Q3) The total number of claims arising in a year have the Poisson distribution with mean
100. The claim sizes are independent and follow the log-normal distribution with mean
Rs, 2,000 and standard deviation Rs. 1,000. There is an excess-of-loss reinsurance
arrangement with retention limit Rs. 2,500.
(i) Determine the percentage of claims that involve the re-insurer. 3)
(i) Determine the mean of the claim amounts paid by the re-insurer. 3)
(iii) If the number of claims paid by the direct insurer in a year happens to be n, give an
expression for the probability that exactly m of these claims involve the re-insurer. (1)
(iv) If the re-insurer pays m claims in a given year, determine the range of possible values of
the total number of claims paid by the direct insurer. (1)
(v) Calculate the unconditional probability that exactly m claims involve the re-insurer, to
show that the number of claims experienced by the re-insurer has a Poisson distribution. (3)
(vi) Calculate the expected aggregate claim amount paid by the re-insurer in one year. )
[12]
Q4 It is presumed that during the initial years of a company, the events of posting net annual
profit in successive years occur independently with probability p. A watchdog agency
gives a profitability score (X) to start-up companies, and keeps a record of the number of
years (Y) taken by the company to post net annual profit for the first time (Y=1,2,3,...).
An analyst wishes to fit a Generalized Linear Model to the paired data (X,Y) for several
start-up companies.
(1) What is the distribution of Y? (D)
(i1)) Calculate the mean of Y. (D)
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(iii)

(iv)
™)

Q5)

(i)
(iii)

Q6)

Q7)

Show that the distribution of Y belongs to an exponential family, and identify the natural
parameter, the mean and the variance function.

Using the canonical link function, state a model that relates X to the mean of Y.

The analyst intends to fit the above model to the data (X;,Y}),...,(Xp,Yn), for n start-up
companies. Write down the likelihood function explicitly in terms of the model
parameters and the data.

Aggregate annual claims on a portfolio of insurance policies have a compound Poisson
distribution with parameter A. Individual claim amounts have the exponential
distribution:

f (X) = exp(—X), X>0.
The insurer calculates premium using a loading of a and the initial surplus U.

If the first claim occurs at time t, what is the probability of that claim causing ruin?
Show that the probability of ruin at the first claim is exp(-U)/ (2 + a )

Determine the minimum loading a if the insurer wishes to make sure that the probability
of ruin at the first claim is less than 5%.

Imagine you are a juror for a murder trial. The victim had been stabbed to death at her
home. The defendant is a neighbour of the victim. After questioning a number of the
victim’s other neighbours, the police framed charges against this defendant. During the
trial, after you hear most of the prosecution’s evidence against the defendant, you
believe the evidence is very weak. You estimate there is only about a 10% chance that
the defendant is guilty. This is the prior probability of guilt. However, at the last minute,
the prosecution introduces evidence they recently obtained from a laboratory test of
blood found at the crime scene. They state that DNA tests performed on the blood
indicate that it has a genetic profile that matches the defendant’s profile. The
prosecution states that this DNA test has only 1% chance of false match, and 1% chance
of false mismatch. Thus, there is only a 1% chance that a randomly selected, innocent
person’s DNA would match the DNA found at the crime scene, and only 1% chance that
the actual murderer’s DNA would not match it. You are also told that the DNA test itself
is error-free. What is the probability that the defendant is guilty, given that there was a
DNA match?

Consider the following probability mass function of a discrete random variable X.
Px(X=2)=0.15
Px(X=3)=10.20
Py(X=5)=0.25
Px(X=7)=0.20
Px(X=11)=0.20
Using the following pseudo-random numbers from the Uniform (0,1) distribution,

generate nine samples from Py: 0.011, 0.757, 0.438, 0.258, 0.981, 0.518, 0.400, 0.351,
0.672.

(4)
)

)
[10]

)
)

)
[10]

[5]

[4]
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Q8)

(1)
(ii)

(iii)

Q9)

An insurance company charges an annual premium of Rs 500 and operates a No Claims
Discount system as follows:

Level 1 : 0% discount
Level 2 : 25% discount
Level 3 : 50% discount

The rules for moving between levels are as follows:

If the policyholder does not make a claim during the year, they move up one
level or are eligible to stay at level 3.

If the policyholder makes 1 claim during the year, they move down one level or
stay at level 1.

If the policyholder makes 2 or more claims during the year, they move straight
down to, or remain at, level 1.

The insurance company has recently introduced a “protection” system where on
reaching, or remaining eligible to remain at, level 3, policyholders are immediately
offered the opportunity to “protect” their discount for an additional annual premium of
Rs 50. If they make no claims or 1 claim during the year they can remain at level 3.
However, if they make 2 or more claims during the year, they move straight t level 1.

Out of the policyholders who had “protected” their discount level at the beginning of the
year and are still eligible to stay at level 3 at the end of the year, 25% chose to “protect”
their discount again the following year. From all the policyholders eligible for level 3 at
the end of the year, 10% chose to take the “protection” option.

Policyholders at different levels are found to have different rates of claiming. The
number of claims made per year follows a Poisson distribution with parameter A as
follows:

Level 1 and 2 3 and “protected”
A 0.6 0.4

Derive the transition matrix.

Calculate the proportions at each of the levels 1, 2, 3 and the “protected” level, when the
system reaches a steady state.

Determine the average premium per policy.

Claims paid to date on a motor insurance account are as follows:
Figures in Rs 000’s
Development Year

Policy Year 0 1 2 3
2004 1500 1300 900 350
2005 2050 1575 1200
2006 2400 1900
2007 3000

(7

(6)

2
[15]
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Inflation for the 12-month period to the middle of each year was as follows:
2005 7%
2006 5%
2007  5.5%
You are given the following further information:
e Annual premiums written in 2007 were Rs 55,00,000
e Future inflation from mid 2007 is estimated to be 5% p.a.
e The ultimate loss ratio (based on mid 2007 prices) has been estimated at 83%
e (Claims are assumed to be fully run off by the end of development year 3
Estimate the outstanding claims arising from policies written in 2007 only, taking
explicit account of the inflation statistics, using the Bornhuetter-Ferguson method.
[13]
Q10)
(1) Explain what a conjugate prior distribution is. 2)
(i1)) The random variables Xj, X», ..., X, are independent and have a density function
f(x) = A * exp(- AX), X>0.
Show that the Gamma distribution can be a conjugate prior for A. 3)
(iii)) a) Ifthe density function of A is
a qa-1,-SA
f(1)= s’l—e’ A>0,
['(a)
show that E[1/A] =s/ (a-1)
b) If Xi, Xy, ..., X; is an independent random sample from the exponential distribution
with parameter A, show that the posterior mean of 1/A (for a Gamma prior) can be
expressed as a credibility estimate, i.e., a weighted average of the prior mean of 1/A
and the sample average.
(6)
[11]
Q11)
(i) Define a Markov Process. 2)
(i) For what value of p an AR(p) process is a (one-step) Markov Process? (D
(i11) Rearrange terms of the AR(2) process X; = 0.5 X + X, + ¢ such that the resultant  (2)
vector AR process becomes a (one-step) Markov Process.
[5]
Q12) Residuals are plotted after fitting a time series model based on a sample of 100
observations. The graph has 43 turning points. Test independence of the residuals at the
5% level of significance. [3]
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