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1. (i) The pay-off matrix depicting losses for A is

Player A
x = 1 x = 2 x = 3

y = 1 6 3 2
Player B y = 2 3 6 4

y = 3 2 4 6
[2]

(ii) For player A,

minimum loss =




2 if he chooses x = 1,
3 if he chooses x = 2,
2 if he chooses x = 3.

Thus, maximin strategy is to choose x = 2. [1]

Also for player A, maximum loss is 6 for all three strategies, so all
three choices of x are minimax. [1]

For player B, minimum loss is –6 for all three strategies, so all
three choices of y are maximin. [1]

Also for player B,

maximum loss =



−2 if she chooses y = 1,
−3 if she chooses y = 2,
−2 if she chooses y = 3.

Thus, minimax strategy is to choose y = 2. [1]

2. The original claim amount X has the Pareto distribution. Let the
parameters of this distribution be α and λ. Then, the claim amount Z
covered by the reinsurer, in respect of claims involving the reinsurer,
has Pareto distribution with parameters α and λ + 10, 000. We have

E(Z) = (λ + 10, 000)/(α − 1);

E(Z2) = 2(λ + 10, 000)2/[(α − 1)(α − 2)].

[1]

The first two sample moments computed from the given data are 25,004.8
and 1,571,081,735. [2]

Solving the equations

(λ + 10, 000)/(α − 1) = 25, 004.8,

2(λ + 10, 000)2/[(α − 1)(α − 2)] = 1, 571, 081, 735,

we have the method of moments estimates α̂ = 5.90042, λ̂ + 10, 000 =
122533.9. Thus, λ̂ = 112533.9. [1]

The probability that a claim payment is shared by the reinsurer is
P (X > 10, 000) = [λ/(λ + 10, 000)]α. Substituting the estimates of α
and λ, we have the estimated proportion 0.3949. [1]
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3. (i) Let the annual number of claims for a patient be N .

E(N) = E(E(N |θ)) = E(λθ) = λµ.

V ar(N) = E(V ar(N |θ)) + V ar(E(N |θ)) = E(λθ) + V ar(λθ)

= λµ + λ2µ2 > E(N).

[2]

(ii) V ar(N |θ) = λθ = E(N |θ). Thus, the conditional variance is the
same as the conditional mean. The unconditional distribution of
N is more dispersed (spread out) in relation to its mean – because
of the additional uncertainty over income. [2]

(iii) We have λµ + λ2µ2 = 20, which implies that λµ = 4. Since
µ = 16, 000, λ = 4/16000 = .00025. [1]

(iv) Let X be a typical claim size and S be the total annual claim size.

E(S) = E(N)E(X) = λµδ

V ar(S) = E(N)var(X) + var(N)[E(X)]2

= λµ(δ2) + (λµ + λ2µ2)δ2 = λµδ2(2 + λµ)

[2]

(v) Initially, condition everything on θ.

E(S|θ) = E(N |θ)E(X|θ) = (λθ)(αθ) = αλθ2,

var(S|θ) = E(N |θ)var(X|θ) + var(N |θ)[E(X|θ)]2
= (λθ)(αθ)2 + (λθ)(αθ)2 = 2α2λθ3.

Now we can use the distribution of θ to calculate the unconditional
mean and variance of S.

E(S) = E(E(S|θ)) = E(αλθ2) = 2αλµ2,

V ar(S) = E(var(S|θ)) + var(E(S|θ))
= E(2α2λθ3) + var(αλθ2)

= 2α2λE(θ3) + α2λ2[E(θ4) − {E(θ2)}2]

= 12α2λµ3 + 20α2λ2µ4.

[3]

4. Let X1, X2, . . . , X100 be the claim sizes. We have for i = 1, 2, . . . , 10,

E(Xi) = eµ+σ2/2 = e10.02 = 22471.4,

var(Xi) = e2µ+σ2
(
eσ2 − 1

)
= 4539.62.

[1]
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Let I1, I2, . . . , I100 be the indicators of claim. Then, for the total claim
amount S =

∑100
i=1 IiXi,

E(S) = 100E(I1)E(X1) = 100 · 0.05 · 22471.4 = 112357.1,

V ar(S) = 100[E(I2
1X

2
1 ) − E{(I1X1)

2}]
= 100[0.05(4539.62 + 22471.42) − 1123.5712]

= 50016.22

[2]

If the per-head premium is P , the probability that claims do not exceed
premium is

P [S ≤ 100P ] = P [(S−112357.1)/50016.2 ≤ (100P−112357.1)/50016.2].

If the normal approximation for S is used, this probability is equal to
0.95 when (100P − 112357.1)/50016.2 = 1.645. Solving for P , we have
P = 1946.3.

The premium loading ξ satisfies the equation 100P = (1 + ξ)E(S).
Solving it, we have ξ = 0.7323. [2]

5. (i) Let the mean number of claims for the ith year be µi. The model
is

P (Ni = y) =
e−µiµy

i

y!
= ey log µi−µi−log(y!), i = 1, . . . , n,

where
g(µi) = β0 + β1xi, i = 1, . . . , n. [2]

The log-likelihood is

� =
n∑

i=1

[Ni log µi − µi − log(Ni!)]

=
n∑

i=1

[Ni log{g−1(β0 + β1xi)} − g−1(β0 + β1xi) − log(Ni!)]

=
m∑

i=1

[Ni log{g−1(β0)} − g−1(β0) − log(Ni!)]

+
n∑

i=m+1

[Ni log{g−1(β0 + β1)} − g−1(β0 + β1) − log(Ni!)]

= log{g−1(β0)}
m∑

i=1

Ni − g−1(β0)m + log{g−1(β0 + β1)}
n∑

i=m+1

Ni

−g−1(β0 + β1)(n − m) −
n∑

i=1

log(Ni!).

[2]
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(ii) The likelihood can be written as

� = log a
m∑

i=1

Ni − am + log b
n∑

i=m+1

Ni − b(n − m) + constant,

where, a = g−1(β0) and b = g−1(β0 + β1). Differentiating � with
the respect to a and b and setting the derivatives equal to zero,
we have

(1/a)
m∑

i=1

Ni − m = 0, (1/b)
n∑

i=m+1

Ni − (n − m) = 0.

These equations lead to the unique solution

â =
m∑

i=1

Ni/m, b̂ =
n∑

i=m+1

Ni/(n − m). [2]

The second derivative (hessian) matrix is(
∂2�
∂a2

∂2�
∂a∂b

∂2�
∂b∂a

∂2�
∂b2

)
=

(−(1/a2)
∑m

i=1 Ni 0
0 −(1/b2)

∑n
i=m+1 Ni

)
,

which is evidently a diagonal matrix with negative diagonal ele-
ments. Thus, â and b̂ indeed correspond to the unique maximum
likelihood estimators. [1]

The corresponding MLE of β0 and β1 are:

β̂0 = g

(
m∑

i=1

Ni/m

)
,

β̂1 = g


 n∑

i=m+1

Ni/(n − m)


 − g

(
m∑

i=1

Ni/m

)
.

[1]

(iii) The fitted value of µi is

µ̂i = g−1(β̂0 + β̂1xi)

=
{

â if 1 ≤ i ≤ m,
b̂ if m < i ≤ n.

=

{ ∑m
i=1 Ni/m if 1 ≤ i ≤ m,∑n
i=m+1 Ni/(n − m) if m < i ≤ n.

These fitted values do not depend on g. [2]

(iv) No. The choice of g did not matter because its value at only two
possible values of xi were needed, and there are two parameters
(β0 and β1) to adjust. This will not work when xi can have more
that two values. [2]
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(v) The canonical link function is g(µ) = log(µ), as is evident from
the first equation of part (i). [1]

(vi) The scaled deviance under the model is 2(�S − �M), where �S is
the log-likelihood for the saturated model (where Ni itself is the
estimator of µi), and

�M =
n∑

i=1

[Ni log µ̂i − µ̂i − log(Ni!)]

=
m∑

i=1

[Ni log â − â − log(Ni!)] +
n∑

i=m+1

[Ni log b̂ − b̂ − log(Ni!)],

where â =
∑m

i=1 Ni/m and b̂ =
∑n

i=m+1 Ni/(n − m). Thus, the
scaled deviance is

2
n∑

i=1

[Ni log Ni − Ni − log(Ni!)]

−2
m∑

i=1

[Ni log â− â− log(Ni!)]−2
n∑

i=m+1

[Ni log b̂− b̂− log(Ni!)]. [2]

(vii) For the model under constraint β1 = 0, it can be easily verified
that the MLE for the common value of the µis is

∑n
i=1 Ni/n. Let

us denote this expression by ĉ. The corresponding log-likelihood
is

�M0 =
n∑

i=1

[Ni log ĉ − ĉ − log(Ni!)] .

The given expression for scaled deviance, 2(�S − �M0), follows eas-
ily. [2]

(viii) The hypothesis to be tested is β1 = 0, or b = a.

This hypothesis can be tested by means of the change in scaled
deviance as one switches from the model with β1 = 0 to the model
without this constraint. [1]

It follows from parts (vi) and (vii) that

2(�S − �M) − 2(�S − �M0)

= 2(�M0 − �M)

= 2
n∑

i=1

[Ni log ĉ − ĉ] − 2
m∑

i=1

[Ni log â − â] − 2
n∑

i=m+1

[
Ni log b̂ − b̂

]

= 2
m∑

i=1

Ni log(ĉ/â) + 2
n∑

i=m+1

Ni log(ĉ/b̂)

−2m(ĉ − â) − 2(n − m)(ĉ − b̂),
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with

â =
m∑

i=1

Ni/m, b̂ =
n∑

i=m+1

Ni/(n − m), ĉ =
n∑

i=1

Ni/n. [1]

The asymptotic distribution of 2(�M0 − �M) is χ2 with one degree
of freedom, which can be used to obtain the p-value. [1]

6. (i) The characteristic equation is

1 − z − .5z2 + .5z3 = 0.

The cubic polynomial of the left hand side factorizes as (1−z)(1−
.5z2). There is exactly one root on the unit circle. Therefore,
d = 1. [1]

Rewriting the model in terms of X = (1 − B)Y , we have

Xt − .5Xt−2 = Zt + .3Zt−1,

which is ARMA(2,1). Thus, the model for Yt is ARIMA(2,1,1).[1]

(ii) The characteristic polynomial of X is (1 − .5z2), whose roots are
±√

2. As the roots are outside the unit circle, the process {Xt} is
stationary. [2]

(iii) The model equation is Xt = .5Xt−2 + Zt + .3Zt−1. By taking
covariances of both sides of this equation with Zt, Zt−1 and Zt−2,
we have

cov(Xt, Zt) = cov(.5Xt−2 + Zt + .3Zt−1, Zt)

= 0 + σ2 + 0 = σ2,

cov(Xt, Zt−1) = cov(.5Xt−2 + Zt + .3Zt−1, Zt−1)

= 0 + 0 + .3σ2 = .3σ2,

cov(Xt, Zt−2) = cov(.5Xt−2 + Zt + .3Zt−1, Zt−2)

= .5σ2 + 0 + 0 = .5σ2.

[2]

By taking covariances of both sides of the model equation with
Xt, Xt−1, Xt−2 and Xt−k (for k > 2), we have

γ(0) = cov(Xt, Xt) = cov(.5Xt−2 + Zt + .3Zt−1, Xt)

= .5γ(2) + σ2 + .09σ2 = .5γ(2) + 1.09σ2, (1)

γ(1) = cov(Xt, Xt−1) = cov(.5Xt−2 + Zt + .3Zt−1, Xt−1)

= .5γ(1) + 0 + .3σ2 = .5γ(1) + .3σ2, (2)

γ(2) = cov(Xt, Xt−2) = cov(.5Xt−2 + Zt + .3Zt−1, Xt−2)

= .5γ(0) + 0 + 0 = .5γ(0), (3)

γ(k) = cov(Xt, Xt−k) = cov(.5Xt−2 + Zt + .3Zt−1, Xt−k)

= .5γ(k − 2) + 0 + 0 = .5γ(k − 2), k > 2. (4)
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[2]

By substituting for γ(2) from (3) into (1), we have γ(0) = .25γ(0)+
1.09σ2, i.e., γ(0) = 109σ2/75. Equation (2) implies γ(1) = 3σ2/5.
Thus, ρ(1) = γ(1)/γ(0) = 45/109. Equations (3) and (4) together
imply ρ(k) = .5ρ(k − 2) for k ≥ 2. It follows that

ρ(k) =

{
(.5)|k|/2 if |k| is even,
(45/109)(.5)(|k|−1)/2 if |k| is odd.

[2]

7. (i) Let the prior distribution be Beta(α, β). Prior density is

f(q) =
Γ(α + β)

Γ(α)Γ(β)
qα−1(1 − q)β−1, 0 < q < 1.

Hence, the posterior density is proportional to

q5(1 − q)245qα−1(1 − q)β−1, 0 < q < 1.

Therefore, the posterior distribution is Beta with parameters α+5
and β + 245. [2]

Given the mean and variance of the prior distribution, we have

α

α + β
= .015,

α

(α + β)2
· β

(α + β + 1)
= .0052. [2]

It follows from the mean equation that β = 197α/3. Substituting
this value in the variance equation, we get

.0152

α
· 197α/3

(200α/3 + 1)
= .0052.

Eventually, we get α = 8.85, β = 581.15.

The posterior distribution is Beta(13.85,826.15). [2]

(ii) The Bayes estimator under the squared error loss function is the
posterior mean,

α + 5

α + 5 + β + 245
=

13.85

840
= 0.0165. [2]

(iii) The Bayes estimator under the all-or-nothing loss function is the
posterior mode, which is the solution of

(α+5−1)x(α+5−2)(1−x)(β+245−1)−x(α+5−1)(β+245−1)(1−x)(β+245−2) = 0.
[1]

Therefore, the solution is

x =
α + 5 − 1

α + 5 + β + 245 − 2
=

12.85

838
= 0.0153. [1]

7



8. (i)

E(α) = E
(
eµ+σ2/2

)
= eσ2/2

∫ ∞

−∞
eµ(2πτ 2)−1/2e−(µ−θ)2/2τ2

dµ

= eθ+σ2/2
∫ ∞

−∞
e(µ−θ)(2πτ 2)−1/2e−(µ−θ)2/2τ2

dµ

= eθ+σ2/2
∫ ∞

−∞
euτ (2π)−1/2e−u2/2du

= eθ+σ2/2
∫ ∞

−∞
(2π)−1/2e−(u2−2uτ)/2du

= eθ+σ2/2+τ2/2
∫ ∞

−∞
(2π)−1/2e−(u−τ)2/2du

= eθ+σ2/2+τ2/2.

[3]

(ii) Let Yi = log Xi, i = 1, 2, . . . , n and Ȳ = n−1 ∑n
i=1 Yi. Using the

normal-normal model, the posterior distribution of µ is seen to
be normal with mean (nȲ /σ2 + θ/τ 2)/(n/σ2 +1/τ 2) and variance
(n/σ2 + 1/τ 2)−1. Thus, the posterior mean of α can be obtained
by replacing θ and τ 2 in the expression of the prior mean of α, by
zȲ + (1 − z)θ and (n/σ2 + 1/τ 2)−1. The expression given in the
question follows. [2]

9. In one year P [0 claim] = e−0.2 = 0.8187,
P [1 claim] = 0.2e−0.2 = 0.1637,
P [2 claims] = 0.22e−0.2/2 = 0.0164,
P [≥ 3 claims] =1 – sum of above = 0.0012.

[2]

Transition matrix is Π so that xnP = xn+1,
where x1 = (0, 0, 0, 0, 0, 10000, 0).

Π = {πij}, πij = P [Class j next year | Class i this year].

Π =




0.8187 0 0 0.1637 0 0.0164 0.0012
0.8187 0 0 0.1637 0 0.0164 0.0012

0 0.8187 0 0 0.1637 0 0.0176
0 0 0.8187 0 0.1637 0 0.0176
0 0 0 0.8187 0 0.1637 0.0176
0 0 0 0 0.8187 0 0.1813
0 0 0 0 0 0.8187 0.1813




.

[4]

x2 = x1P = (0, 0, 0, 0, 8187, 0, 1813).
x3 = x2P = (0, 0, 0, 6702.7, 0, 1340.2 + 1484.3, 144.1 + 328.7)

= (0, 0, 0, 6702.7, 0, 2824.5, 472.8). [2]
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10. Assumptions :

A loss ratio  developed  from years 1997-2000  is a reasonable  a-priori
estimate  for years  2001-2005.
There are no  outstanding claims  for pre-2001 years.
The chain ladder method and its assumptions  are applicable       [2]

Development YearAcc.
Year 0 1 2 3 4 5

Ult Earned
Premium

Est. LR

1997 2,323 2,713 2,902 3,009 3,081 3,065 3,065 3,606 85.00%
1998 2,489 2,907 3,109 3,224 3,301 3,287 3,287 3,864 85.07%
1999 2,709 3,165 3,385 3,509 3,393 3,572 3,572 4,206 84.93%
2000 2,966 3,464 3,705 3,842 3,934 3,914 3,914 4,604 85.01%

Average 85.00%
2001 3,512 4,042 4,205 4,394 4,458 5,305
2002 4,054 4,610 4,938 5,101 5,896
2003 4,614 5,421 5,690 6,578
2004 5,354 6,180 7,546
2005 5,700 8,304

TOTAL 33,721 32,502 27,934 23,079 18,167 13,838 13,838
(1997-2005)
Tot-last 28,021 26,322 22,244 17,978 13,709
Dev. F 1.160 1.061 1.038 1.011 1.009 1.000
Cum. F 1.304 1.124 1.059 1.020 1.009 1.000

                                                                                                                                                       [4]
Accident Year

2005 2004 2003 2002 2001 2000
Est. Ult. Cl.
LR 85%

7,058 6,414 5,591 5,012 4,509 3,913

Exp Inc. 5,413 5,707 5,280 4,914 4,469 3,913
Emg Res. 1,645 707 311 98 40 0
Inc. Cl 5,700 6,180 5,690 5,101 4,458 3,914
Ultimate
Liab.

7,345 6,887 6,001 5,199 4,498 3,914

  
                                                                                                                                [4]
Overall totals Ultimate Liab. Years 2001-05 29,930

Paid Claims 20,485

Reserve for Outstanding & IBNR 9,445 [2]
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11. Note that X1 + · · ·+ Xn has the gamma(n, µ) distribution. Therefore,

P (N = n) = P (X1 + · · · + Xn ≤ t ≤ X1 + · · · + Xn+1)

=
∫ t

0
P (X1 + · · · + Xn ≤ t ≤ X1 + · · · + Xn+1|X1 + · · · + Xn = x)

× µnxn−1

(n − 1)!
· e−x/µdx

=
∫ t

0
P (Xn+1 ≥ t − x)

xn−1

µn(n − 1)!
· e−x/µdx

=
∫ t

0
e−(t−x)/µ xn−1

µn(n − 1)!
· e−x/µdx

=
∫ t

0

xn−1

µn(n − 1)!
· e−t/µdx

=
1

µn(n − 1)!
· e−t/µ

∫ t

0
xn−1dx

=
1

µn(n − 1)!
· e−t/µ tn

n

=
e−t/µ

n!
(t/µ)n.

This is clearly the Poisson probability function with mean t/µ. [3]

In order to generate a sample from the Poisson distribution with mean
λ, generate independent uniformly distributed (over 0 to 1) random
numbers U1, U2, . . ., and let Xi = − log(Ui)/λ, for i = 1, 2, . . .. Then
the Xi’s are iid exponential with mean 1/λ. Define N as the largest
number such that the sum X1 + · · · + XN does not exceed 1. Then
N has the requisite Poisson distribution. This follows from the above
result with µ = 1/λ and t = 1. [3]
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12.  (1 − αB)Yt = Zt
            Yt = 1 / (1 − αB) * Zt
           = (1 + αB + α 2 B2 + ….) * Zt

         = Zt + αZ t − 1  + α 2Z t − 2  +…… [1]

         V(Yt) = (1 + α 2 + α 4 + α 6 + ....) σ 2

      = 1 / (1 − α 2) * σ 2  [2]
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