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1. (i) The pay-off matrix depicting losses for A is

Player A
r=1 x= r=3
y=1 6 3 2
Player B y =2 3 6 4
y=3 2 4 6 2]
(ii) For player A,
2 if he chooses = =1,
minimum loss = { 3 if he chooses 7 = 2,
2 if he chooses = = 3.
Thus, maximin strategy is to choose = = 2. 1]

Also for player A, maximum loss is 6 for all three strategies, so all
three choices of x are minimax. 1]

For player B, minimum loss is —6 for all three strategies, so all
three choices of y are maximin. 1]

Also for player B,

—2 if she chooses y =1,
maximum loss = { —3 if she chooses y = 2,
—2 if she chooses y = 3.

Thus, minimax strategy is to choose y = 2. 1]
2. The original claim amount X has the Pareto distribution. Let the
parameters of this distribution be o and A. Then, the claim amount Z

covered by the reinsurer, in respect of claims involving the reinsurer,
has Pareto distribution with parameters a and A 4+ 10,000. We have

E(Z) = (A+10,000)/(a —1);
E(Z*) = 2(A+10,000)%/[(a — 1)(a — 2)].
1]

The first two sample moments computed from the given data are 25,004.8
and 1,571,081,735. 2]

Solving the equations

(A+10,000)/(c — 1) = 25,004.8,

2(\ +10,000)*/[(a — 1)(a — 2)] = 1,571,081, 735,
we have the method of moments estimates & = 5.90042, A+ 10,000 =
122533.9. Thus, A = 112533.9. 1]

The probability that a claim payment is shared by the reinsurer is
P(X > 10,000) = [A\/(A 4+ 10,000)]*. Substituting the estimates of «
and A, we have the estimated proportion 0.3949. 1]
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3. (i) Let the annual number of claims for a patient be N.

E(N) = E(E(N|0)) = E(\0) = \u.
Var(N) = E(Var(N|0)) + Var(E(N|0)) = E(\0) + Var(\0)
= M+ Np® > E(N).

2]

(ii) Var(N|0) = A = E(N|6). Thus, the conditional variance is the
same as the conditional mean. The unconditional distribution of
N is more dispersed (spread out) in relation to its mean — because

of the additional uncertainty over income. 2]
(iii) We have Ap + A?p? = 20, which implies that Ay = 4. Since
p = 16,000, A = 4/16000 = .00025. 1]

(iv) Let X be a typical claim size and S be the total annual claim size.

E(S) = E(N)E(X) = A\ud
Var(S) = E(N)var(X )+va7°(N)[E(X)]2
= M(6?) + M+ N p?)0% = Mud?(2 + )

(v) Initially, condition everything on 6.

E(S|0) = E(N[O)E(X|f) = (A)(af) = ard?,
var(S|0) = E(N|0)var(X|0) + var(N|0)[E(X]|0)]?
= (A0)(afd)? + (M) (ah)? = 20°26°.

Now we can use the distribution of 8 to calculate the unconditional
mean and variance of S.

E(S) = E(E(S]0) = E(a\?) = 2a\i?,
Var(S) = FE(var(S|0))+ var(E(S|0))
= E(2a°\0%) 4+ var(a)d?)
= 20°M\E(0%) + *N[E(0Y) — {E(0*)}]
= 1202Ap® + 202N\t

4. Let Xy, Xo, ..., X100 be the claim sizes. We have for i = 1,2, ..., 10,

E(X;) i Hot/2 — 1002 — 99471 4,
var(X;) = e (¢ — 1) = 4539.6.



d.

Let Iy, 15, ..., I1p9 be the indicators of claim. Then, for the total claim
amount S = Zg{ L, X;,
E(S) = 100E([;)E(X;)=100-0.05-22471.4 = 112357.1,
Var(S) = 100[E(I}X}) — B{(1.X1)*}]
= 100[0.05(4539.6% + 22471.4%) — 1123.5717]
= 50016.2°

2]
If the per-head premium is P, the probability that claims do not exceed
premium is

P[S < 100P] = P[(5—112357.1)/50016.2 < (100P—112357.1)/50016.2].

If the normal approximation for S is used, this probability is equal to
0.95 when (100P — 112357.1)/50016.2 = 1.645. Solving for P, we have
P =1946.3.

The premium loading ¢ satisfies the equation 100P = (1 + &)E(S).
Solving it, we have & = 0.7323. 2]
(i) Let the mean number of claims for the ith year be y;. The model
1s
P(N; =y) = e p — eylogui—pi—log(y!)  , _q n
i=Y)= y‘ - ) I A
where
9(pi) = Bo+ by, i=1,...,n 2]
The log-likelihood is

S ZN 1ng“z i — 1Og(N')]

3

= Y [Nilog{g™'(Bo + Bri)} — g~ (Bo + frs) — log(Ny!)]

=1

[N log{g~"(Bo)} — 97" (o) — log(N;!)]

Il
|M3

_Xn: Nlog{g (Bo+B1)} —g (ﬁ0+ﬁl) log(V;!)]

n

= log{g (%) }ZN “(Bo)ym+1log{g (Bo+ 1)} D N

i=m+1

(ﬁo + B1)( Z log (N,



(i)

(i)

The likelihood can be written as

¢ =1logad N;—am-+logb >  N;—b(n—m)+ constant,
i=1 i=m—+1
where, a = g7 () and b = g7 (s + (1). Differentiating ¢ with
the respect to a and b and setting the derivatives equal to zero,
we have

m

(1/a)Y Ni—m=0, (1/b) zn: N; —(n—m) =0.

i=1 i=m+1
These equations lead to the unique solution
a=Y Ni/m, b= > Nj/(n—m). 2]
i=1 i=m+1
The second derivative (hessian) matrix is

= :<—<1/a2> ™ N 0 )
N. )’

o o 0 —(1/0) i

obda b2
which is evidently a diagonal matrix with negative diagonal ele-
ments. Thus, a and b indeed correspond to the unique maximum
likelihood estimators. 1]

The corresponding MLE of 3y and (; are:
fo = g (ZNz/m> )
i=1
B = g( > Ni/<n—m>) g (ZNi/m).
i=1

i=m—+1

The fitted value of y; is

fi = g '(Bo+ Py)
0 if1<i<m,
{B ifm<i<n.
_ { ™ Ni/m if 1 <i<m,
N i1 Ni/(n—m) ifm<i<n.

These fitted values do not depend on g. 2]

No. The choice of g did not matter because its value at only two
possible values of x; were needed, and there are two parameters
(Bo and (1) to adjust. This will not work when z; can have more
that two values. 2]



(v)
(vi)

(vii)

(viii)

The canonical link function is g(p) = log(u), as is evident from
the first equation of part (i). [1]

The scaled deviance under the model is 2({g — £)s), where (g is
the log-likelihood for the saturated model (where N; itself is the
estimator of y;), and

|
\E

by = [Nilog ji; — f1; — log(N;!)]

@
Il
—

[Niloga —a —log(N;)] + 3 [Nilogh — b — log(N:!))],

i=m+1

I
NE

@
Il
—

where @ = Y7, N;/m and b = Y7 iem+1 NVi/(n —m). Thus, the
scaled deviance is

=1
—23 [Niloga—a—log(Ni)]—2 S [N;logh—b—log(N:))]. [2]
=1 i=m+1

For the model under constraint 3; = 0, it can be easily verified
that the MLE for the common value of the p;s is Y1 | N;/n. Let
us denote this expression by ¢. The corresponding log-likelihood
is

Uvy =Y [Nilogé — é —log(N;!)] .

i=1
The given expression for scaled deviance, 2(¢g — £y, ), follows eas-
ily. 2]
The hypothesis to be tested is #; = 0, or b = a.

This hypothesis can be tested by means of the change in scaled
deviance as one switches from the model with 3; = 0 to the model
without this constraint. 1]

It follows from parts (vi) and (vii) that

2(0s — lpr) — 2(bs — Cpgy)

= 2(lry — Cmr)

= 2) [Nilogé—é =2 [Niloga—a] =2 > [Nilogh—b
i=1 i=1 i=m+1

= 23 Nilog(¢/a)+2 > Nilog(é/b)
=1 i=m-+1

—2m(¢—a) —2(n—m)(é— 8)7



with

a_f;zvi/m, b= an N;/(n —m), é:iNi/n. 1]

=m-+1 =1

The asymptotic distribution of 2(¢y;, — £5r) is x? with one degree
of freedom, which can be used to obtain the p-value. 1]

(i) The characteristic equation is

1—z2— 5224+ 522=0.

The cubic polynomial of the left hand side factorizes as (1—2z)(1—
52?). There is exactly one root on the unit circle. Therefore,

d=1.

1]

Rewriting the model in terms of X = (1 — B)Y, we have

Xt - -5Xt—2 — Zt + ‘3Zt—17

which is ARMA(2,1). Thus, the model for Y; is ARIMA(2,1,1).[1]

(ii) The characteristic polynomial of X is (1 — .52?), whose roots are
++/2. As the roots are outside the unit circle, the process {X;} is
stationary.

2]

(iii) The model equation is X; = .5X; o + Z; + .3Z;_1. By taking
covariances of both sides of this equation with Z;, Z;_; and Z;_»,
we have

cov(Xy, Zy) = cov(.5Xi_o+ Zy + 3241, Zy)

= 0+0*+0=0"

cov(Xy, Zyq) = cov(bXy o+ Zy+ 371, Z41)

= 040+ .30% = .30%,

cov(Xy, Zy o) = cov(bXy o+ Zy+ .37 1,7 9)

= 5624+0+0=.502

2]

By taking covariances of both sides of the model equation with
Xy, X1, Xy and Xy (for k > 2), we have

7(0)

cov(Xy, Xy) = cov(.5Xy o+ Zy + 32,1, X3)

57(2) 4+ 0% +.090% = 57(2) + 1.0907, (1)
cov(Xy, Xy—1) = cov(bXy o+ Zy + .37 1, Xy 1)
5y(1) + 0+ .30 = 5y(1) + .302, (2)
cov(Xy, Xi—2) = cov(bXy—o+ Zy + 3741, Xi—2)
57(0) + 040 = .57(0), (3)
cov( Xy, Xy—) = cov(bXy_o + Zy + 371, Xi—k)
Sy(k=2)+0+0=5yk—-2), k>2. (4)
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2]
By substituting for v(2) from (3) into (1), we have v(0) = .25v(0)+
1.0902, i.e., v(0) = 10902 /75. Equation (2) implies (1) = 302/5.
Thus, p(1) = v(1)/~(0) = 45/109. Equations (3) and (4) together
imply p(k) = .5p(k — 2) for k > 2. It follows that

L if |k| is even,
o= { (45/109)(.5)1M=172 i |k| is odd. ?

(i) Let the prior distribution be Beta(c, ). Prior density is

o+ 05) 41
T(a)T(3)"

Hence, the posterior density is proportional to

(1—¢)"', 0<qg<l.

fle) =

¢°(1—q)**¢" (1-¢)"", 0<g<l

Therefore, the posterior distribution is Beta with parameters a+5

and (3 + 245. 2]
Given the mean and variance of the prior distribution, we have
a - S s 2]

orp - M LA Lt

It follows from the mean equation that 3 = 197«/3. Substituting
this value in the variance equation, we get

0152 1
0158 197a/3 o
a  (200a/3+1)

Eventually, we get a = 8.85, 3 = 581.15.
The posterior distribution is Beta(13.85,826.15). 2]

ii) The Bayes estimator under the squared error loss function is the
Y
posterior mean,

a+5h  13.85
a+5+5+245 840

— 0.0165. 2]

(iii) The Bayes estimator under the all-or-nothing loss function is the
posterior mode, which is the solution of

(a+5—1)2@T572) (1—g)BF245-1) _ (51 (31 945 1) (1—x)P+255-2) —
[1]
Therefore, the solution is
a+5—1 1285
a+5+p5+245—-2 838

—0.0153. 1]



E(a) = E(er77?)
_ )2 /OO e“(27r7'2)_1/26_(“_9)2/272d,u
_ o2 /°° e(M—e)(27”—2)—1/26—(/1—9)2/27'2(1“

69+a2/2/ euT(Qﬂ_)—l/2€—u2/2du

_ 60+02/2 /OO (27r>71/267(u272u‘r)/2du

69+U2/2+72/2/ (27T)—1/26—(U—T)2/2du
66+U2/2+T2/2.

3]

(ii) Let ¥; = log Xy, i = 1,2,...,n and Y = n~ 13", Y;. Using the
normal-normal model, the posterior distribution of u is seen to

be normal with mean (nY /o +0/72)/(n/o?+1/7%) and variance
(n/o? 4+ 1/7%)~1. Thus, the posterior mean of a can be obtained

by replacing 6 and 72 in the expression of the prior mean of «, by

2Y + (1 — 2)0 and (n/o? 4+ 1/7%)71. The expression given in the

question follows. 2]
. In one year P[0 claim] = ¢ 02 = (.8187,
P[1 claim] = (0.2¢702 = 0.1637,
P2 claims] = (0.2%2¢792/2 = 0.0164,
P[> 3 claims|] =1 — sum of above = 0.0012.
2]
Transition matrix is I so that z,P = z,1,
where 1 = (0,0,0,0,0,10000,0).
II ={m;}, mi; = P[Class j next year | Class i this year].
0.8187 0 0 0.1637 0 0.0164 0.0012
0.8187 0 0 0.1637 0 0.0164 0.0012
0 0.8187 0 0 0.1637 0 0.0176
1= 0 0 0.8187 0 0.1637 0 0.0176
0 0 0 0.8187 0 0.1637 0.0176
0 0 0 0 0.8187 0 0.1813
0 0 0 0 0 0.8187 0.1813
[4]
2y = 2P = (0,0,0,0,8187,0, 1813).
x3 =22 P = (0,0,0,6702.7,0,1340.2 + 1484.3, 144.1 + 328.7)
= (0,0,0,6702.7, 0, 2824.5, 472.8). 2]



10.  Assumptions :

A loss ratio developed from years 1997-2000 is a reasonable a-priori

estimate for years 2001-2005.
There are no outstanding claims for pre-2001 years.

The chain ladder method and its assumptions are applicable [2]
Acc. Development Year Ult Earned Est. LR
Year 0 1 2 3 4 5 Premium
1997 2,323 | 2,713 | 2,902 | 3,009 | 3,081 | 3,065 | 3,065 3,606 | 85.00%
1998 2,489 | 2,907 | 3,109 | 3,224 | 3,301 | 3,287 | 3,287 3,864 | 85.07%
1999 2,709 | 3,165 3,385| 3,509 | 3,393 | 3,572 | 3,572 4,206 | 84.93%
2000 2,966 | 3,464 | 3,705 | 3,842 | 3,934 | 3914 | 3914 4,604 | 85.01%
Average 85.00%
2001 3,512 | 4,042 | 4,205 | 4,394 | 4,458 5,305
2002 4,054 | 4,610 | 4,938 | 5,101 5,896
2003 4,614 | 5421 | 5,690 6,578
2004 5,354 | 6,180 7,546
2005 5,700 8,304
TOTAL | 33,721 | 32,502 | 27,934 | 23,079 | 18,167 | 13,838 | 13,838
(1997-2005)
Tot-last | 28,021 | 26,322 | 22,244 | 17,978 | 13,709
Dev.F | 1.160| 1.061 | 1.038 | 1.011| 1.009 | 1.000
Cum.F | 1304 | 1.124] 1.059| 1.020 | 1.009 | 1.000
[4]
Accident Year
2005 2004 2003 2002 2001 2000
Est. Ult. CL. 7,058 6,414 5,591 5,012 4,509 3,913
LR 85%
Exp Inc. 5,413 5,707 5,280 4,914 4,469 3,913
Emg Res. 1,645 707 311 98 40 0
Inc. Cl 5,700 6,180 5,690 5,101 4,458 3,914
Ultimate 7,345 6,887 6,001 5,199 4,498 3,914
Liab.
[4]
Overall totals Ultimate Liab. Years 2001-05 29,930
Paid Claims 20,485
Reserve for Outstanding & IBNR 9,445 [2]



11. Note that X; + - -+ X, has the gamma(n, x) distribution. Therefore,

P(N=n) = PXi+ -+ X, <t < X1+ -+ Xpy1)
t
- /OP(X1+-~-+Xn§t§X1+---+Xn+1|X1+---+Xn:x)

Mnxn—l

e/
(= 1)1 e “hdx

X

'px v g
= > l—r)——.e®
/0 (Kot 2 x),u”(n —1)! ‘ v

t n—1
_ / ey T —a/ug,
0 ur(n —1)!

+ n—1
— / xi . eft/;udx
o p(n—1)!

= —~ _.etm /t "
u(n —1)! 0

_ 1 —t/p "
ut(n —1)! o
e_t/:uf

= — /"

This is clearly the Poisson probability function with mean ¢/pu. 3]

In order to generate a sample from the Poisson distribution with mean
A, generate independent uniformly distributed (over 0 to 1) random
numbers Uy, Us, ..., and let X; = —log(U;)/A, for i = 1,2,.... Then
the X;’s are iid exponential with mean 1/\. Define N as the largest
number such that the sum X; + --- + Xy does not exceed 1. Then
N has the requisite Poisson distribution. This follows from the above
result with 4 = 1/X and ¢t = 1. 3]
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12 (1-aB)Y,=27
Y,=1/(1-aB)*Z
=(1+aB+a’B*+..)*Z
=Z+al, \ ta*Z, ., +...... [1]

Vr)=(1+a’+a*+a’+.)o
=1/(1-a)*c’ [2]
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