

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 CONTROL SYSTEMS SEMESTER - 4

Time: 3 Hours]			[Full Marks : 70

Graph paper and semi-log paper are provided at the end of this booklet.

GROUP - A

(Multiple Choice Type Questions)

۱.	Cho	ose th	the correct alternatives for any ten of the following: $10 \times 1 =$	10
	i)	The	e transfer function of a system is its	
٠.		a)	square wave response b) step response	
		c)	ramp response d) impulse response.	
	ii)	The	e concept of analogous system is applicable to	
•		a)	linear systems only	
		b)	non-linear systems only	
		c)	both linear & non-linear systems	
•		d)	non-linear systems but can be extended to linear systems too.	
	iii)	In a	a signal flow graph	
	:	a)	nodes represent variables	
		b)	branches represent variables	
		c)	some specified nodes & some specified branches represent variables	
÷		d)	only one node & all branches represent variables.	

4642 (16/06)

CS/É	3.TECH	m	/SEM-4	/EE-4	11/09

iv)	PID	controller improves the					
	a)	steady state response only					
	þ)	transient response only					
	c)	both steady state response	& transic	ent response			
	d)	none of these.					
v)	Nyq	uist criterion for determination	on of stab	ility of control systems is			
	a)	algebraic method	b)	graphical method			
	c)	semi-graphical method	d)	none of these.			
vi)	A control system is defined by the relationship $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 5x = 12(1-e^{-2t})$. The						
	resp	conse of the system at $t \to \infty$	is				
	a)	x = 6	b)	$\dot{x} = 2$			
	c)	x = 2.4	d)	x = -2.			
vii)	The	number of root loci for a u	nity feed	back system having oper	loop transfer		
	func	ction with finite n number of	poles & fi	nite m number of roots is			
	a)	m-n	b)	n – m	·		
	c)	m	d)	n.			
viii)	The	transfer function of a basic I	ontrol	ler is given by (all k's are	real constants		
)						
	a)	$k_0 + \frac{k_1}{s} + k_2 s$ $k_1 s + k_2 s$	b)	$k_0 + k_2$ s			
	c)	k_1s+k_2s	d)	$k_0 + k_2 s$ $k_0 + \frac{k_1}{s}.$			
ix)	The	initial slope of the Bode plo	t for a tra	ansfer function having a	simple zero at		
	orig	in is					
	a)	-20 dB/decade	b)	10 dB/decade			
	c)	20 dB/decade	d)	- 10 dB/decade.			

- If the maximum overshoot is 100%, the damping ratio is

- b)
- vibseta c) to 0.5 (x shine of to turne que ad) to ∞.
- - The input-output equation of a system is given by Y = mx + c, where m & c are xi) constants. The system is
 - a) linear

- active c)
- & time required to reach peni

colback system has an open loop transfer

GROUP - B

GROUP - C

(Short Answer Type Questions)

Answer any three of the following questions.

Derive the transfer function of the network shown below

- Find the stability of the system whose characteristic equation is given by $s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3 = 0$.
- Find out the overall transfer function C/R of the following system using the rules of 4. signal flow graph.

- 5. a) Define error efficients corresponding to step & ramp inputs.
 - b) A unity feedback closed loop second order system has a transfer function $\frac{81}{s^2+0\cdot6s+9}$ & it is excited by a step input of 10 units. Find out its steady state error.
- 6. A unity feedback system has an open loop transfer function $G(s) = \frac{25}{s(s+8)}$. Determine its damping ratio, peak overshoot & time required to reach peak.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) Explain the meaning and significance of phase margin & gain margin of a control system. How will you obtain the values of these margins from Bode plots?
 - b) Sketch the Bode plot for the following function & find out the value of gain margin & the phase margin:

$$G(s) = \frac{10(s+2)}{s(s+6)(s+10)}.$$
 6 + 7 + 1 + 1

8. a) A unity feedback control system has open loop transfer function $G(s) = \frac{k}{s^3 + s^2 + s - 3}.$

Find out the range of values of k so that the closed loop system is stable.

- b) Sketch the root locus for the system having $G(s) H(s) = \frac{k}{s(s+2)(s^2+4s+20)}$.

 Show all the steps.
- 9. a) Construct the state model for the system characterized by differential equation Y(t)+6Y(t)+11Y(t)=u(t).

4642 (16/06)

b) Find the pulse transfer function for the sampled system shown in the following figure.

7 + 8

- 10. a) State the Nyquist stability criterion.
 - b) Using Nyquist stability criterion, determine whether the unit feedback close loop system having open loop transfer function $G(s) H(s) = \frac{10}{s(1+s)(1+0.05s)}$ is stable or not.
 - c) What is meant by relative stability? Can you find out relative stability by Routh stability criterion? 3 + 7 + 5
- 11. Write short notes on any three of the following:

3 x 5

- a) Servo motor
- b) PID controller
- c) Sample & Hold circuits
- d) Absolute stability & Relative stability.

END