upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

H 1473

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2006.

Second Semester

Bio-medical Engineering

PH 135 — MATERIALS SCIENCE

(Common to Electronics and Communication Engineering and Metallurgical Engineering)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Calculate the interplanar spacing for (321) plane in simple cubic lattice with interatomic spacing of $4.12\,\text{Å}.$
- 2. What is meant by point defect in a crystal lattice what are the different types?
- 3. Write down the expression for Fermi-Dirac distribution function and plot it as a function of energy.
- 4. The superconducting transition temperature (T_c) for mercury with isotopic mass 199.5 is 4.185 K. Calculate the value of T_c when its mass changes to 203.4
- 5. The Hall coefficient of a certain specimen is found to be -7.35×10^{-5} m³c⁻¹ from 100 to 400 K. Determine the nature of the material. If the electrical conductivity is found to be 200 ohm⁻¹m⁻¹, calculate the mobility.
- 6. The intrinsic carrier density at room temperature of a semiconductor is $2.37\times10^{19}/m^3$. The mobilities of electron and holes are $0.38\,$ and $0.18\,m^2v^{-1}s^{-1}$. Calculate the resistivity.
- 7. What is hysteresis? Draw a hysteresis curve for a soft magnetic material.
- 8. Distinguish between polar and non-polar substances.
- 9. What is photo electric effect?
- 10. What are the different phosphors used in CRO screens?

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(i)	Sho	w that a five-fold rotation axis does not exist in a crystal lattice.
	(ii)	Der	ive Bragg's law of X-ray diffraction in crystals.
	(iii)	Giv	e an account of powder method of crystal structure analysis. $(4 + 3 + 9)$
12.	(a)	(i)	What are density of states in metals? Derive an expression for the density of states.
		(ii)	Draw the density of states of a metal and insulator.
		(iii)	Find the lowest energy of an electron confined to move in a one dimensional box of length 0.5Å . $(10+2+4)$
			Or
	(b)	(i)	How a superconducting state is distinguished from a normal state?
		(ii)	When a metal goes from a normal state to a superconducting state which properties get changed and which does not?
		(iii)	Explain Meissner effect.
		(iv)	Discuss two applications of superconductors one in medicine and another one in electrical engineering. $(2+6+4+4)$
13.	(a)	(i)	What is an intrinsic semiconductor?
		(ii)	Give two examples.
		(iii)	Assuming Fermi-Dirac distribution, derive an expression for the concentration of electrons per unit volume in the conduction band of an intrinsic semiconductor. $(2+2+12)$
			Or
	(b)	(i)	What is Hall effect?
		(ii)	Describe an experimental set up to measure the Hall coefficient.
		(iii)	Explain how it can measure the mobility, conductivity, Hall co-efficient and Hall angle. $(2+2+12)$

2

H 1473

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

- 14. (a) (i) Differentiate between diamagnetic, paramagnetic and ferro magnetic substances on the basis of susceptibility.
 - (ii) What is a magnetic domain?
 - (iii) What are its characteristics?
 - (iv) On the basis of domain theory explain ferro magnetism.

(2+2+2+10)

Or

- (b) (i) What is meant by internal field in a solid dielectric?
 - (ii) Deduce an expression for the local field for structures with cubic symmetry.
 - (iii) Obtain Clausius-Mosotti equation.

(2+6+8)

- 15. (a) (i) What is a LCD?
 - (ii) What are the different types?
 - (iii) Explain briefly the construction and working of a field effect type of LCD.
 - (iv) What are the advantages?

(2+2+8+4)

Or

- (b) (i) What is luminescence?
 - (ii) What are the different types?
 - (iii) What is an exciton?
 - (iv) What are the different types?
 - (v) What is a trap and what are different kinds of traps?

(2+3+2+3+6)

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com