Your Roll No.

6178

B.Sc.(Hons.) Computer Science / I Sem.		
Paper 104 : DIGITAL ELECTRONICS		
(Admissions of 2001 and onwards)		

Time: 3 Hours Maximum Marks: 75

(Write your Roll No on the top immediately on receipt of this question paper.)

Attempt all questions

Parts of a question must be answered together

- What is the radix (base) that satisfies the I (a) following equation? 2 $(5\ 3)_r + (120)_r = (213)_r$ Generate decimal codes for 5 3 2-1 code as (b) 3 a self complimenting weighted code Convert (25)₁₀ and (60)₁₀ into equivalent (c) binary Then perform (25)10 -(60)10 using 3 2's complement method Show that a positive logic NAND gate is a (d)
- 6178 1 P.T.O.

negative logic NOR gate and vice-versa

2

	(e)	Given the 8-bit data 10010110, generate a 13-bit composite word for the hamming code that corrects single error and detects double error	<u> </u>
	(f)	In a 2K × 8 memory, determine (i) number of address lines (ii) number of data lines (iii) specify its bit capacity	3
2	(a)	Simplify the following Boolean function using tabulation method $f = \Sigma (0, 8, 24, 32, 33, 41, 48, 56)$ $d = \Sigma (16, 17, 40, 57)$	8
	(b)	Draw the logic diagram of a $2 \rightarrow 4$ line decoder using only NOR gates Include an enable input	4
3	(a)	Simplify the given function using NAND-NAND logic $f(A, B, C, D) = \pi (1, 3, 5, 7, 13, 15)$	4
	(b)	Implement a full subtractor with two 4 × 1 multiplexers	4
	(c)	Construct a 16×1 multiplexer with two 8×1 multiplexer and one 2×1 multiplexer	
		Use only block diagrams	4

	(b)	Describe the internal architecture of ROM that store 4K bytes and uses a square register array	4
	(c)	Explain static hazards in combinational circuit (with example)	2
6	(a)	Draw the circuit of 4-bit binary ripple down counter using J-K flip-flops	4
	(b)	Design a combinational circuit that converts excess-3 decimal code to 2421 decimal code	8

6178 4 300

4 (a) A new flip-flop namely DUMB has 2 inputs (x & y) with the characteristic table as

		21,00,00,00,10,10,11		
	х	у	$\theta(t+1)$	
The second second second	0	0	$\overline{\theta}(t)$	
	0	1	l(set)	
-	1	0	reset	
	1	1;	$\theta(t)$	

Find its characteristic equation and excitation table

5

7

6

(b) Design it using D-flip-flop and logic gates

For this state diagram, design a circuit using J-K flip-flops and logic gates

5 (a) Determine the minimal state table that is equivalent to the following state table

The rollowing state table			
NS, output			
Input $x = 0$	x = 1		
F, 0	C, 0		
H, 1	A, 1		
H, 0	D, 1		
- B, 0	H, 0		
G, 0	C, 0		
C, 1	E, 1		
H, 1	E, 1		
C, 0	A, I		
	NS, our Input $x = 0$ F, 0 H, 1 H, 0 B, 0 G, 0 C, 1 H, 1		