[This question paper contains 3 printed pages]

Your Roll No

B.Sc.(Hons.) II Sem./Computer Science

Paper 203-Calculus II

(Admissions of 2001 and onwards)

Time 3 Hours

Maximum Marks 75

(Write your Roll No on the top immediately on receipt of this question paper)

All questions are compulsory

All questions carry equal marks

Use of calculator is permitted

State min-max inequality for integrals. By dividing the interval [0, 1] into two subintervals, use min-max inequality to prove that

$$\frac{7}{12} \le \int_{0}^{1} \frac{1}{1+x} dx \le \frac{5}{6}$$

2 Graph the function

$$f(x) = 2 - |x|, -1 \le x \le 1$$

using area, evaluate the integral $\int_{-\infty}^{\infty} Q - |x| dx$

6182 (2)

3 Solve the following initial value problem for \bar{r} as a function of t.

$$\frac{d\vec{r}}{dt} = \frac{3}{2} (t+1)^{1/2} \hat{i} + e^{-\hat{j}} + \frac{1}{t+1} \hat{k}$$
$$\vec{r}(0) = \hat{k}$$

- A solid lies between planes perpendicular to the x-axis at x = -1 and x = 1 The cross sections perpendicular to the x-axis between these planes are squares whose diagonals run from the parabola $y = -\sqrt{x}$ to the parabola $y = \sqrt{x}$. Find the volume of the solid generated.
- Find the average value of the function f(x, y) = xy over the region D, where $D = \{(x, y) \mid x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$ Also find two points in D where f(x, y) takes its average value
- 6 Evaluate by changing to polar co-ordinates, the integral

$$\int_{0}^{1} \int_{0}^{\sqrt{-x}} e^{-x^{2}+y^{2}} dy dx$$

- Find the centre of mass of a thin plate of constant density δ , bounded by the lines x = 0, y = x and the parabola $y = 2 x^2$ in the first quadrant
- 8 Evaluate the integral

$$\int_{0}^{\infty} \int_{0}^{4-x^{2}-y} x \, dz \, dy \, dx$$

(3) 6182

Find the surface area of the solid generated by revolving the curve $y=\sqrt{x+1}$, $1 \le x \le 5$ about X-axis

- 10 Find the Fourier Series of the function f(x) = |x|, - $\pi \le x \le \pi$, what is the sum of the series at $x = 0, \frac{3\pi}{2}, 3\pi$?
- 11 Verify that $u = x^2 y^2 y$ is harmonic in the whole complex plane and find a conjugate harmonic function V of u
- 12 Find
 - (1) $\ln (4 + 3i)$
 - (a) z satisfying $\ln z = 4 3i$
 - (iii) Principal value of i^i
- 13. Evaluate $\int R e z dz$ where C is vertical from 1 + i to 1 + 2i, then horizontal to 3 + 2i
- 14. Find Laurent series of expansion of .

$$f(z) = \frac{-2z+3}{z^2 - 3z + 2}$$
 with centre O

15. For counterclockwise circle $C \cdot |z| = \frac{3}{2}$, evaluate

$$\int \frac{\tan z}{z^2 - 1} dz \text{ using residue theorem}$$