Code No: R05210504

II B.Tech I Semester Regular Examinations, November 2008 DIGITAL LOGIC DESIGN (Common to Computer Science & Engineering, Information Technology and Computer Science & Systems Engineering) Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain, How error occurred in a data transmission can be detected using parity bit. [6]
 - (b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend. $[5 \times 2]$
 - i. 111011 111000
 - ii. 1110-110110
 - iii. 10010-1101
 - iv. 110-10100
 - v. 11011-10000.
- 2. (a) Reduce the following Boolean expressions.
 - i. (AB' + AC')(BC + BC')(ABC)
 - ii. AB'C + A'BC + ABC
 - iii. (ABC)'(A + B + C)'
 - iv. A + B'C (A + (B'C)')
 - (b) Obtain the Dual of the following Boolean expressions. [8+8]
 - i. ABC + A'B + ABC'
 - ii. (BC' + A'D)(AB' + CD')
 - iii. x'yz + xz
 - iv. xy + x (wz + wz').
- 3. (a) If $F_1 = \Pi$ 3,4,7,8,11,14,15 and $F_2 = \Sigma 1,2,4,5,7,8,10,11,12,15$ obtain minimal SOP expression for $\overline{F_1 \bullet F_2}$ and draw the circuit using NAND gates.
 - (b) Draw the two -level NAND circuit for the following Boolean expression: $(A\overline{B} + C\overline{D}) E + BC (A + B)$ also obtain minimal SOP expression and draw the circuit using NAND gates. [8+8]
- 4. (a) Implement 64 × 1 multiplexer with four 16 × 1 and one 4 ×1 multiplexer. (Use only block diagram).
 - (b) A combinational logic circuit is defined by the following Boolean functions.
 F₁ = ABC + AC
 F₂ = ABC + AB
 F₃ = ABC + AB
 Design the circuit with a decoder and external gates. [8+8]

Code No: R05210504

Set No. 4

- 5. Convert the following:
 - (a) J-K flip-flop to T- flip-flop
 - (b) R-S flip-flop to J-K-flip-flop
 - (c) J-K flip-flop to D- flip-flop
 - (d) R-S flip-flop to D-flip-flop.

- [4+4+4+4]
- 6. (a) Explain synchronous and ripple counters. Compare their merits and demerits.
 - (b) Design a modulo -12 up synchronous counter using T- flip flops and draw the circuit diagram. [8+8]
- 7. (a) Explain the block diagram of a memory unit. Explain the read and write operation a RAM can perform.
 - (b) i. How many 32K * 8 RAM chips are needed to provide a memory capacity of 256K bytes.
 - ii. How many lines of the address must be used to access 256K bytes? How many of these lines are connected to the address inputs of all chips?
 - iii. How many lines must be decoded for the chip select inputs? Specify the size of the decoder. [8+8]
- 8. Reduce the number of states in the state table listed below. Use an implication table. [16]

Present state	Next state		Output	
	x=0	x=1	x=0	x=1
a	f	b	0	0
b	d	С	0	0
С	f	е	0	0
d	g	a	0	0
е	d	с	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0
