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MATHEMATICAL SCIENCES
PAPER-I (PART-B)

Let {xy) be a sequence of non-zero real numbers. Then

1.
2.

3
4.

Let {xzn and {vq} be two sequences of real numbers such that

If 2y — a, then a = sup =y,

x:'e+1
I =1 ¥a, then sy — 0.

x?!

Fxpon ¥a, then {x,) diverges.
IFn =2y ¥n,then {z,) diverges

! rr+2,

n=1, 2,3L

1. {vutis an bounded sequence.

2. [y} 1% an iNCreasing secuence.

) {sn) and {vy} converge together.

4 {vu} 15 af iNCreasing sequence. @

Letf:[0, 1] = (0, c0) be a continuous functy

pose f{0) =1 and £(1) =7. Then

1. f1s uniformly continuous andis

2. Fisincreasing and £ 0, 17)

3 Fiz notuniformly continue

4. f1snotbounded.

Letf: [a,b] = [c,d] bea e and bijective function. then
1. fis continuus, L need not be.

2 fand £ arekoth-continnous.

) ,then 15 a decreasing function.

4 rimly continuous,

It Z x, 18 divergent, then {x, does not converge to 0.
1

I Z x, 18 convergent, then Z %, 18 absolutely convergent.
1 1

If Z x, 15 convergent, then xj —=0, a5 n—coo
1

If 2, —0, then me 1z convergent.
1
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Letf: | —j be differentiable with 0 <f "(x) < 1 forall = Then

1.

2.
=
4

Let £;[0,1] — j be a sequence of differentiakle functions

Pizsincreasing and fis bounded.

Fisincreasing and fiz Eiemann integrable on | .
Pizsincreasing and fis uniformly continuous.

f1z of bounded vanation.

converges uniformly on [0, 1]te afunction . Then

1.
3

4.

Let, if possible, = lim

i =i be anon-negative

f1s differentiable and Eietnann integrable on [0, 1].
Fis uniformly continuous and Eiemann integrable on [0, 1].

f1s continuous, f need not be differentiable on {0, 1) and ned not be

Eiemann integrable on [0, 1].
fneed not be uniformly continuous on [0, 1]

sinfx* + %)

e

= lim
(7. p1=10.0)
o exists but B does not.

o does not exists but P exists.
o, B do not exist,

Both o, Pexiat 'E: :

s@"ue integrable function. Then

f1z finite almost ev
fiz a continuous
fhas atmostc

£2is Lebe

many discontinuities.
#hrable.

cxy =11} then
nnected but compact.
her connected notr compact.
*hounded but not connected.
iz unbounded but connected.

Consider the linear space

X = C[0, 1] with the norm |f][=sup{|r)}0=£=1}.

LetF=

Then
1.

2.
3
4

{fEX:f(%)=EI} andG={gEX:g(%)iD}.

Fisnotclosed and Gis open.
Fis closed but Giz not open.
Fizsnotclozed and Gis not open.
Fis closed and Gis open.

Azzume that (f)
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Let WV be the vector space of all n x n real matrices, & = [a5] such that a; = -a; for
all1, 1. Then the dimension of W 13:

1 PR
2

5 i —n
2

3 w-n.

4 1.

Let n=tnk where m and k are integers = 2. Let A = [a;] be a matnx given by a5=1
if for somer=0,1,.., m-1,rk = 1, j = {r+1k and a3= 0, otheg¥¥se. Then the
null space of & has dimension '

1. mik — 1)

2. mlk — 1.

3 kim — 13 o
4, ZEr O,

The zet of all selutions to the system of eg

(1-1)x;—1x=0
2e1+ (1l —1ma=10

1z given by

1 (z1, 2= (0, 0"
; !

.S :
20 -::-ST+ zsmT where ¢ 15 any complex number.

3o 3T :
=z EOST,E s1nT where ¢ 15 any complex number.

Let A be an tm x n matrix where m < n. Consider the system of linear equati ons
Az=bwherebizannz 1 column vector and b £ 0. Which of the following is
always true?

1. The system of equations has no solution.

2. The system of equations has a solution if and only 1f 1t has infinitely many
soluti ons.

= The system of equations has a unique solution.

4 The system of equations has at least one solution.
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Let T be a normal operator on a complex inner product space. Then T 13 self-
adjeint if and only if

All eigenvalues of T are distinct.
Al eigenvalues of T are real.

T has repeated eigenvalues.

T has at least one real etgenvalue.

Folw b

A 2% 2real matriz A 15 diagonalizable if and only 1

(tra) <4 Det &
(tr )% =4 Det A
(tr &) =4 Det &
Tr A =Det A

Folw b

B identity tatnizx).

Let & be a3z = complex matnz such that Al=1 (= tha
Then :

A iz diagnonalizable.

A iz not diagonalizable. \
The minimal polynomial of & has A root.
All eigenvalues of & are real. % ;

Fln) b=

g, My,
Wenomials of degree < 3andlet T W —

1 by Pit) a Q) where Q(t) = Plat + b).
Yito the basis 1, t, ¥ of Vig

Let VW be the real vector space of
W be the linear transformatio
Then the matrix of T with ge

1
2.
3.
czczag
4 B 0
0 o b
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@ 00
The minimal polynomial of the 2 x 3real matriz |0 a 0] 1=

00 &
1 00— a) (-,
0. 0 —a) 00 —h)
3 (0 —a) (3 —b)%
4, (T -a) (-1

00
The characteristic polynomial of the 3 % 3real matnz A= |1 0 =& |1s
01

W+ a3+ X +e
(—a) (3-b) K -c).
(30-1) (X—abc)?
(-1 (H—abe).

Fa b b

@
Let ey, e2, e denote the standard basiz of | ¥ g1 + bes + ces, g9, e313 an

orthonormal basis of | * if and only if

ay} 15 a sequence of complex numbers such that Zax diverges. Then
0

L]

. . 3 .
the radius of convergence B of the power series Z:—:(z—ljl?d satisfies :

r=ll
1. E=3
2 R=2
3. E=2
4, E=m
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Letf, g be two entire functions. Suppose |72 (z)+g%(2)=1, then

flz)f ' (z) +glz)g' (2) = 0.
fand g must be constant.
tand g are both bounded functions.

tand g have no zeres on the unit circle.

F b b

. sinz . . .
The integral I — where the curve 12 taken anti-clockwise, equals
=2 = (z— )

-2
270,
0.
47

M b2

f=n0

Fis unbounded.
no such funchon exists.
fhasz no zeros.

Fln) 1S =

Fln) 1D =

et f* analytic function and let f(z:l:ZfIm (z—2)™ be its Taylor series in
n=ll

gome dizsc. Then

F0) = (2n)lay
oy = nlay,
f&2) = (2n)ay
FEo = play,

Fa b By
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73

4.

The signature of the permutation

1 2 3 L =)
0= 18
n n-1 n-=2 1

L (-1

2. (-1)".
CHE 5 Vi
R

cycles of odd size and m of which are cycles of even size, wh k=6 and
6 =m =8 Itisalso known that ¢is an odd permutation
following 15 true? ;

1 k=4 andm==6. ®
2 m="7.
3 k=&
4 m ==&

Letp, g be two distinct prime numb pq_l + qp_l 15 congruent to

1modpyg.
2modpa.
p—1 mod po.
g-1mod pg.

bl B2

Which ones of the following three statements are correct”

(&Y Every group of order 1515 cyclic.
(BY  Ewery group of order 21 15 cyclic.
() Ewvery group of arder 351z cyclic.

(&) and (.
(B) and ().
(&) and (B).
(B only.

Folw by
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Let p be apritne number and consider the natural action of the group G5, (¢ ;) on
¢, % ¢, Then the index of the isotropy subgroup at (1, 1)1s

2
=1
pp-1)
pz— 1.
P

Fo b b =

The quadratic polynomial W4 + ¢ is irreducible over the finite field
¢ . 1f and only 1f

1 bi-de=1

2. b-dc=4

3. either b°—d4c=2 or b°—4c=3.
4 sither b —dc=1 or bé—dc=4

Let K dencte a proper subfield of the field F = inite field with 214

elements. Then the number of elements of K must he '

1. 2% where m=1,2,3, 4 or &

2. 2" where m=1,2L ,11.

3 2

4. 2% where m and 12 are coprys

The general and singular solut tlﬁbe differential equation

—Qx _1+1 x, where
iy 5 P 2?:

1 21:}.?—}{2—9132 :

2, Doy —xt+ Fl= =+ 3
3 2oy +x* M, y=13z
4 2oy + % 0, 3y =4

s linear differential equation with real constant coefficients, which
cos 2z +e " sin 2%, as one of its solutions, is given by

1 D%+6D + 13y = 0,
2. @2—6D+13;;y = 0.
3 (D~ 6D + 13)%y = 0
4 D%+ 6D + 1375y = 0.
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The particular integral vp(x) of the differential equation

4 ‘f+ d—y— = L x=0
dx a&x x+1
1z given by

3y ()= 1 (3) + v, ()

where vi(x) and vwi(x) are given by

f 1 f ] ]. f 1
1. T —e—t, (=0 () — =1, (2= .
1()x33(} 1()xgg() )
g xu’(x)+iu’(x)—o u’(x)—iu’(xj—L
: 1 [ERE: - L2 TR
t 1 i i 1 t 1
3. xly (x) —?1@ (x)=0, v (x) +I—2L)2 (Ki=— %
f 1 f
4. ey (x) =y (=0,
x
The boundary value problem

Y+ ady=0,y(0)=0, y(m+i &

1. only for kb {04

2 foral l = - 00,1,

3 only For ke 00,4

4. \ * oo, 1) T {1,co)

The g mtegral of z(xp — v =§.r?'—x iz
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A singular solution of the partial differential equation =z +xp — sz.r qz - XSpq =01s

2

1 z:x—.
Y

2. z:ig.
-z
Y

3 T D
pE
2

4, z=2-
x

The characteristics of the partial differential equation

2 2
36;—.}’14 %—7}?13%:& are given by
vt

1 1

1. I+F:C1, x —F:CE.
36 36

2. t—=c), X ——=c,.

. 18
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Mewton's method for finding the positive square root of a = 0 gives, assuming

x>0, zp% Va,

X,
1. Ty == t—.
2 x,
1
2 :Jr:,m:—(x:,d +iJ.
2 X,

The extremal problem

I

Jy(m1= {0 —»*}ax

]

y(=1, y(m=2, has

1. aunique extremal if A=1
2. infinitely many extremals if
) aunique extremal 1if A=

4 infinitely many extrem

The functional

1

)= [0 42 da y(©)=1, y(D=e

,but not a strong minimum on e

Strong minimum on g%,

weal, but not a strong masimum on &
A strong mazimum on e

solution of the integral equation

" (e 1de=sinh x, iz

Bxi=e™".
$ix)=e".
#x) = sinh x.
#x) = coshx .

e - b T e S A
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If @p) denotes the Laplace transform of @{x) then for the integral equation of
convolution type

X = 1+2fcos(x—.ﬁ] Gt e,
0

P plis given by
1 pz +1

' (p-1°
5 p2+1

' (p+1)°
; (pz +1)

| pip-1
PR 0 U

| plp+1)t

The Lagrangian of a dynamical system is & +k‘1g12, then the Hamiltonian

iz given by
i II|||
1, 1 2
1. H=p/+p;— i . '
1
2. H:Z[pf+p§)+;cg
3 H=pi+pi+i

2 bnd potential energy WV of a dynamical systemn are given
er usual notations, by

M i sin® 8)+ B (yBoos 0+ 6F |
and V' =Mgl costl The generalized momentum p, 1=
1 p,=2 Bftfros §+24%

2. p;ﬁ:%(g&:c}snﬁ%ﬁf.

3 pﬁzﬂ(gﬁrosﬂ+%j.
4. 2= B(lﬁ‘tasé@@.
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Consider repeated tosses of a coin with probability p for head in any toss. Let
HNEk p) be the random wanable denoting the number of tails before the K head.

Then P(MNE{10p)=; 3™ head occurred in 15% toss) 13 equal to

Folw b

POE (7.p)=j— 15). for j=15, 16, L
PE (7.p)=j— 12), for j=12, 13, L

PE (10, p) = — 15), for =15, 16, L
P(MEB (10, p) =1 — 12), for 1= 12, 13, L

suppose X and Y are standard normal random variables. Then which of the
following statements 15 correct?

1
3.
4

Let F be the distribution function of a strictly p
expectation g Define

Gz

li{l—F{y}}dy, if =0
=94y

(3, ¥) has a bivariate normal distribution.

Cov (X, T)=0

The given information does not determine the join
T :
¥+ Y iz normal

Hon of 3 and

e dom wanable with finite

[:l?

Chaly O or 1.
Cnly 0.
Any numberin [0, 1].
Only 1.
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Hp oL s arandom sample from a normal population with mean zero and

w-1
variance . Let X = Z}f Then the distribution of T= 3" (X - X)is
Mol iml

1. th-1
2 M0, e = 11 &)

3 v, 2
M

4 o, 2L oy

M

Let 2y, ¥o, L 2 beindependent exponential random vanables aramm eters

AL LA, respectively. Let ¥ =rmin 20, L, X5). Then Y has
distribution with parameter

sonential

1 Z;,%

M

2. IT4
3. min{ A.K A4} :
4, max{ 4,.K, 4}

II||||.
I%is on avariable 3. Then the value of A

SUPPOSE X1, X2l Enare n obs

X
which tninimizes 3, (x;
jml

1.
2. N
3 2l En
4 o tmaxixn Lo x)
' 2
cuppose X1, Mo, L, Xpare 1.1.d with density function {(x)= iﬂ Gex, 8=0
x
Then
1. Z%is sufficient for &
i1
2. i X- 15 sufficient for &.

ity

3. H;z 1z sufficient for &

1

4. (maX}f mm}fi) 15 not sufticient for &.
1835 LLisn



101, Suppose X 18 a random variable with density function fx).
TotestHp: f(x1=1,0<=z<1,vs Hp:f{x)=2%, 0<x <1, the TUMP test
at level @=0.05

Does not exst

Eejects Hpif 3= 095

Eejects Hpif X = 0.05

Eejects Hpfor 2 < O or X = Oy where ), Czhave to be determuined.

Folw b

102, Suppose the distibution of 3 15 known to be one of the following:

1 _.
AR =™ < x <0,

NErs

Falx) :%e_lxl,—m < X <00,

_,ﬂ(x):%, —2=x <2

If 2 =01z observed, then the maximum 1 ] estimate of the

distribution of 3 is
|||-

1 ) iy

2 Falx)

2, Fa(x)

4. Doeznot exast.

#1n, areindependently and 1dentically distnbuted random
n distribution function F{- ). Suppose F(- ) 15 absolutely

103 Suppese X, i=
wariables with

1 Iton Test

2 Mann-Whitney Wilcoxon rank sum test
= Wilcozon Signed rank test
4

Eolmogorov Smirnov test
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Suppose ¥ ~MN (8, ) and suppose the prior distribution on & is M(u,T°). The
¢ F o7
Zra) Trd T P

The Bayes” estimator of & under squared error loss 15 given by

posterior distnbution of &1z also N[

1 L ¥
T

2 Ty
=

3 L ¥+ 25 7
' T+ T+a

4 7.

Consider the model
yi=w+tO-D+BE-) +te, 1=1, &1=1,42,

it block, L iz the general

where vy 18 the observation under i treatme
; spectively and 5 are randotn

effect, 8 and P are treatment and block parameter
errors with mean 0 and common variance

I, Band [ are all estimable .

1. I

2. Band [ are estitm able, i 1 ﬁ‘hn able
3. I and B are estitn able, % estim able
4 W and B are estimabld Aot estim able

1. 2 e;=0always
i-1

) 3 g,=0if one column of X is (1,1 ,1)7
il

= Zé‘i=|:| only 1f one column of 21 (1L ,le
i1

4. nothing can be said about 2 g

ial



107 Suppose %{fxlrwf'lfp ([ﬂ]nE] where

1 -1z 0 L 0

142 1 0 L ¢
T=| 0 0
M M T
0 0

and Tz 15 positive definite. Then

P (31 -X2<0, X1+ = 0| Xp=0)is equal to

1. 1/8
2. 1/4
3 1/2
4, 1
108, Suppose the variance-covariance matnx of a randogs
4 00
2.=(0 8 2|
0o 2 8
The percentage of vanation explal ptite first principal component is
1. 50
2. 45
3 &0
4. 40
109 A population Sotfag .!. of 10 students. The marks obtained by one student 13 10
less than f} age of the marks obtained by the remaining 9 students. Then
the v 1 the population of marks (&) will dlways satisfy

ot =10
o =10
=

Foo bl 2=



110, For what value of A, the following will be the incidence matrix of a BIBDY

11
H=(1 0
01

— ey

R
T
=

S S
Il
x) Ju =

111, With reference to a 2° — Factorial experiment, consider the f ] ffec:ts AR

and AB. Then the estimates of

Only A and B are orthogonal
Only A and Care othogonal
Cnly B and C are orthogonal
A B oand C are orthogonal

o lnd BD =

R

au%omponent. Failure rate of the

112, LetX be arw. denoting fatlure tirg
cotnponent 1z constant 1f and opd |
exponential
negative bing
wetbull
normal

F bn) b=

113 Consider th

mas 2xo

subyect ¥ —x7 =1
Zx - 26
HL,H2 = 0

This problem has

1. unbounded solution space but unique optimal selution with fimte optimum
obijective value

2. unbounded solution space as well as unbounded obijective value

3 no feasible solution

4. unbounded solution space but infinite optimal selutions with finite

optitnum objective value
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Consider an MUTTE quewing system in which atmost K customers are allowed
in the system with parameters 4 and g, respectively { o=4/7 ). The expected

steady state number of customers in the queneing system 18 E/2 for

o=1
o=l
o=l
any o

Fo b

Consider the system of equations
Py + Poto + Pazs + Pasta = b, where

1 0 1 2 3
PFi=12|, Pa=| 2|, Ps=14]|, P= 0|, b=4].
3 1 2 0 &

The following vector combination does not for

(P1, P2, F3)
(P1, P2, Fa)
(P2, P, Pa)
(P1, P3 Pq).

o bl b
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