MATHEMATICAL SCIENCES PAPER-I (PART-B)

- 41. Let $\{x_n\}$ be a sequence of non-zero real numbers. Then
 - If $x_n \rightarrow a$, then $a = \sup x_n$
 - If $\frac{x_{n+1}}{x_n} \le 1 \ \forall n$, then $x_n \to 0$.
 - If $x_n \le n \ \forall n$, then $\{x_n\}$ diverges.
 - If $n \le x_n \ \forall n$, then $\{x_n\}$ diverges.
- Let $\{x_n\}$ and $\{y_n\}$ be two sequences of real numbers such that $x_n = y_n$ 42. n = 1, 2, 3, L
 - {yn} is an bounded sequence.
 - (xn) is an increasing sequence.
 - {x_n} and {y_n} converge together.
 - (yn) is an increasing sequence.
- Suppose f(0) = 1 and f(1) = 7. Then 43. Let $f:[0, 1] \to (0, \infty)$ be a continuous function
 - fis uniformly continuous and is woll only.
 - f is unit order and f([0, 1]) = [1, N]
 - f is not uniformly continuous
 - f is not bounded.
- Let $f: [a, b] \rightarrow [c, d]$ be a magnetione and bijective function. then 44.
 - f is continuous, with need not be.

 - f and f^{-1} are not continuous. If b-a , then f is a decreasing function. f is not uniformly continuous.
- Let $\sum_{n=1}^{\infty} x_n$ be a series of real numbers. Which of the following is true? 45.
 - If $\sum_{n=1}^{\infty} x_n$ is divergent, then $\{x_n\}$ does not converge to 0.
 - If $\sum_{k=1}^{\infty} x_k$ is convergent, then $\sum_{k=1}^{\infty} x_k$ is absolutely convergent.
 - If $\sum_{n=1}^{\infty} x_n$ is convergent, then $x_n^2 \to 0$, as $n \to \infty$.
 - If $x_n \to 0$, then $\sum_{k=1}^{\infty} x_k$ is convergent.

- 46. Let $f: j \to j$ be differentiable with $0 \le f'(x) \le 1$ for all x. Then
 - 1. fis increasing and fis bounded.
 - 2. fis increasing and fis Riemann integrable on i.
 - 3. f is increasing and f is uniformly continuous.
 - 4. f is of bounded variation.
- 47. Let $f_{n'}[0,1] \to j$ be a sequence of differentiable functions. Assume that (f_n) converges uniformly on [0,1] to a function f. Then
 - 1. f is differentiable and Riemann integrable on [0, 1].
 - 2. f is uniformly continuous and Riemann integrable on [0, 1].
 - 3. f is continuous, f need not be differentiable on (0, 1) and need not be Riemann integrable on [0, 1].
 - 4. f need not be uniformly continuous on [0, 1].
- 48. Let, if possible, $\alpha = \lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$, $\beta = \lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$. Then
 - 1. α exists but β does not.
 - 2. α does not exists but β exists.
 - 3. α, β do not exist.
 - 4. Both α, β exist.
- 49. Let $f: j \to j$ be a non-negative Lee esque integrable function. Then
 - 1. f is finite almost everywijere.
 - 2. fis a continuous function.
 - 3. f has at most colprably many discontinuities.
 - f² is Lebesgue in regrable.
- 50. Let $S = \{(x, y) \in \mathbb{R}^2 : xy = 1\}$. then
 - 1. Sis no connected but compact.
 - 2. Sign wither connected nor compact.
 - 3. Shounded but not connected.
 - Sis unbounded but connected.
- 51. Consider the linear space

$$X = C[0, 1]$$
 with the norm $||f|| = \sup\{|f(t)|: 0 \le t \le 1\}$.

Let
$$F = \left\{ f \in X : f(\frac{1}{2}) = 0 \right\}$$
 and $G = \left\{ g \in X : g(\frac{1}{2}) \neq 0 \right\}$.

Then

- 1. F is not closed and G is open.
- 2. F is closed but G is not open.
- F is not closed and G is not open.
- 4. Fis closed and Gis open.

- 52. Let V be the vector space of all $n \times n$ real matrices, $A = [a_{ij}]$ such that $a_{ij} = -a_{ji}$ for all i, j. Then the dimension of V is:
 - $1. \qquad \frac{n^2 + n}{2}.$
 - $2. \qquad \frac{n^2 n}{2}.$
 - 3. $n^2 n$
 - 4. n
- 53. Let n=mk where m and k are integers ≥ 2 . Let $A = [a_{ij}]$ be a matrix given by $a_{ij}=1$ if for some $r=0, 1, ..., m-1, rk < i, j <math>\leq (r+1)k$ and $a_{ij}=0$, otherwise. Then the null space of A has dimension:
 - 1. m(k-1).
 - 2. mk 1.
 - 3. k(m-1).
 - zero.
- The set of all solutions to the system of equal one

$$(1-i) x_1 - ix_2 = 0$$

 $2x_1 + (1-i)x_2 = 0$

is given by:

- 1. $(x_1, x_2) = (0, 0)$
- 2. $(x_1, x_2) = (1, 1)$
- 3. $(x_1, x_2) = 3 + \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}$ where c is any complex number.
- 4. $(x) = c \left(\cos \frac{3\pi}{4}, i \sin \frac{3\pi}{4}\right)$ where c is any complex number.
- 55. Let A be an m x n matrix where m < n. Consider the system of linear equations A $\underline{x} = \underline{b}$ where \underline{b} is an n x 1 column vector and $\underline{b} \neq \underline{0}$. Which of the following is always true?
 - The system of equations has no solution.
 - The system of equations has a solution if and only if it has infinitely many solutions.
 - 3. The system of equations has a unique solution.
 - 4. The system of equations has at least one solution.

- All eigenvalues of T are distinct.
- 2. All eigenvalues of T are real.
- 3. T has repeated eigenvalues.
- 4. T has at least one real eigenvalue.

57. A 2 x 2 real matrix A is diagonalizable if and only if:

- $(trA)^2 \le 4 Det A.$ $(tr A)^2 \ge 4 Det A.$
- $(tr A)^2 = 4 Det A.$ 3.
- 4. Tr A = Det A.

Let A be a 3 x 3 complex matrix such that $A^3 = I$ (= the x) 58. Then:

- 1. A is diagnonalizable.
- 2. A is not diagonalizable.
- The minimal polynomial of A has a repeated root. 3.
- All eigenvalues of A are real.

Let V be the real vector space of real polynomials of degree < 3 and let $T:V\to V$ be the linear transformation, defined by P(t) a Q(t) where Q(t)=P(at+b). 59. Then the matrix of T with respect to the basis 1, t, t2 of V is:

1.
$$\begin{pmatrix} b & b & b^2 \\ 0 & a & 2ab \\ 0 & 0 & \ddots \end{pmatrix}$$

$$\begin{array}{cccc}
3. & \begin{pmatrix} b & b & b^2 \\ a & a & 0 \\ 0 & b & a^2 \end{pmatrix}
\end{array}$$

$$4. \qquad \begin{pmatrix} a & a & a^2 \\ b & b & 0 \\ 0 & a & b^2 \end{pmatrix}$$

60. The minimal polynomial of the
$$3 \times 3$$
 real matrix $\begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$ is:

1.
$$(X - a)(X - b)$$

2.
$$(X - a)^2 (X - b)$$

1.
$$(X - a) (X - b)$$
.
2. $(X - a)^2 (X - b)$.
3. $(X - a)^2 (X - b)^2$.
4. $(X - a) (X - b)^2$.

4.
$$(X - a)(X - b)^2$$

61. The characteristic polynomial of the 3 × 3 real matrix
$$A = \begin{pmatrix} 0 & 0 & -c \\ 1 & 0 & -b \\ 0 & 1 & a \end{pmatrix}$$
 is:

1.
$$X^3 + aX^2 + bX + c$$
.

3.
$$(X-1)(X-abc)^2$$

4.
$$(X-1)^2 (X-abc)$$

1.
$$a \neq 0$$
, $a^2 + b^2 + c^2 = 1$.
2. $a = \pm 1$, $b = c = 0$.
3. $a = b = c = 1$.
4. $a = b = c$.

2.
$$a = \pm 1$$
, $b = c = 0$.

3.
$$a = b = c = 1$$

4.
$$a = b = c$$
.

63. Let
$$E = \{z \in \pounds : e^z = i\}$$
 Then E is:

- a singleton.

 E is a set wellements.
 E is an infinite set.
- E is an affinite group under addition.

64. Suppose
$$\{a_n\}$$
 is a sequence of complex numbers such that $\sum_{n=0}^{\infty} a_n$ diverges. Then

the radius of convergence R of the power series $\sum_{n=0}^{\infty} \frac{a_n}{2^n} (z-1)^n$ satisfies:

1.
$$R = 3$$
.

4.
$$R = \infty$$
.

- 1. f(z)f'(z) + g(z)g'(z) = 0.
- 2. f and g must be constant.
- 3. f and g are both bounded functions.
- 4. f and g have no zeros on the unit circle.

66. The integral $\int_{|z|=2s} \frac{\sin z}{(z-\pi)^2}$ where the curve is taken anti-clockwise, equals:

- 1. -2πi.
- 2. 2πi.
- 3. 0.
- 4πi.

67. Suppose $\{z_n\}$ is a sequence of complex numbers and $\sum_{n=0}^{\infty} z_n$ converges.

Let $f: \pounds \to \pounds$ be an entire function with $f(z_n) = n$ n = 0, 1, 2, ... Then

- 1. $f \equiv 0$.
- 2. f is unbounded.
- 3. no such function exists.
- 4. f has no zeros.

68. Let $f(z) = \cos z$ and g(z) = 0, for $z \in \pounds$. Then

- fandgare both winded on £.
- fis bounded but g is not bounded on £.
- 3. g is bounded, out f is not bounded on £.
- 4. f and a kre both bounded on the x-axis.

69. Let $f''(z) = \sum_{n=0}^{\infty} a_n (z-2)^{2n}$ be its Taylor series in some disc. Then

- 1. $f_{n}^{(n)}(0) = (2n)!a_n$
- 2. $f^{(n)}(2) = n! a_n$
- 3. $f^{(2n)}(2) = (2n)! a_n$
- 4. $f^{(2n)}(2) = n!a_n$

70. The signature of the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & L & n \\ n & n-1 & n-2 & 1 \end{pmatrix}$$
is

- 1. $(-1)^{\binom{n}{2}}$.
- 2. $(-1)^{*}$
- 3. $(-1)^{n+1}$.
- 4. $(-1)^{n-1}$
- 71. Let α be a permutation written as a product of disjoint cycles of which are cycles of odd size and m of which are cycles of even size, when 4 ≤ k ≤ 6 and 6 ≤ m ≤ 8. It is also known that α is an odd permutation. Then which one of the following is true?
 - 1. k = 4 and m = 6.
 - 2. m = 7.
 - 3. k = 6.
 - 4. m = 8.
- 72. Let p, q be two distinct prime numbers at then $p^{q-1} + q^{p-1}$ is congruent to
 - 1 mod pq.
 - 2 mod pq.
 - p-1 mod pq.
 - 4. q-1 mod pq.
- 73. What is the total war ber of groups (upto isomorphism) of order 8?
 - 1. only
 - 2. 3.\(
 - 3. 🚕 🖔
 - 4.
- 74. Which ones of the following three statements are correct?
 - (A) Every group of order 15 is cyclic.
 - (B) Every group of order 21 is cyclic.
 - (C) Every group of order 35 is cyclic.
 - 1. (A) and (C).
 - (B) and (C).
 - 3. (A) and (B).
 - (B) only.

- Let p be a prime number and consider the natural action of the group $GL_2(p)$ on 75. $\not e_x \times \not e_x$. Then the index of the isotropy subgroup at (1, 1) is

 - p(p-1).
- The quadratic polynomial $X^2 + bX + c$ is irreducible over the finite field 76. \$ s if and only if

 - $b^{2}-4c = 1.$ $b^{2}-4c = 4.$ either $b^{2}-4c = 2$ or $b^{2}-4c = 3.$ either $b^{2}-4c = 1$ or $b^{2}-4c = 4.$
- Let K denote a proper subfield of the field $F = GF(\$^{12})$ a finite field with 2¹² 77. elements. Then the number of elements of K must be equal to
 - 2^{m} where m = 1, 2, 3, 4 or 6. 2^{m} where $m = 1, 2, \bot$, 11.

 - 3.
 - 2^m where m and 12 are copping expeach other.
- The general and singular solutions of the differential equation 78.

$$y = \frac{9}{2}xp^{-1} + \frac{1}{2}px$$
, where $p = \frac{9}{4}$ are given by

- 1. $2cy x^2 9c^2 = 0$, 3y = 2x. 2. $2cy x^2 + 9c^2 = 0$, $y = \pm 3x$. 3. $2cy + x^2 + 9c^2 = 0$, $y = \pm 3x$. 4. $2cy + x^2 + 9c^2 = 0$, 3y = 4x. A homogenous linear differential equation with real constant coefficients, which has $y = 2c^{3x} \cos 2x + e^{-3x} \sin 2x$, as one of its solutions, is given by:
 - $(D^2 + 6D + 13)y = 0.$

 - $(D^{2} 6D + 13)y = 0.$ $(D^{2} 6D + 13)^{2}y = 0.$ $(D^{2} + 6D + 13)^{2}y = 0.$

80. The particular integral $y_p(x)$ of the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} - y = \frac{1}{x+1}, \ x > 0$$

is given by

$$y_{y}(x) = x\nu_{1}(x) + \frac{1}{x}\nu_{2}(x)$$

where $v_1(x)$ and $v_2(x)$ are given by

1.
$$x\nu_1'(x) - \frac{1}{x^2}\nu_2'(x) = 0$$
, $\nu_1'(x) - \frac{1}{x^2}\nu_2'(x) = \frac{1}{x+1}$.

2.
$$x\nu_1'(x) + \frac{1}{x^2}\nu_2'(x) = 0$$
, $\nu_1'(x) - \frac{1}{x^2}\nu_2'(x) = \frac{1}{x+1}$.

3.
$$x\nu_1'(x) - \frac{1}{x^2}\nu_2'(x) = 0$$
, $\nu_1'(x) + \frac{1}{x^2}\nu_2'(x) = \frac{1}{x+1}$.

4.
$$x\nu_1'(x) + \frac{1}{x^2}\nu_2'(x) = 0$$
, $\nu_1'(x) + \frac{1}{x^2}\nu_2'(x) = \frac{1}{x^2+1}$

- The boundary value problem 81. $y'' + \lambda y = 0$, y(0) = 0, $y(\pi) + k$ $y(\pi) = 0$, is self-adjoint

 - 3. only for k (0,4]. 4. only for k (0,0) U(1,00).
- The general thregral of $z(xp yq) = y^2 x^2$ is 82.

$$1. z = \frac{x^2}{y}.$$

$$2. z = \frac{x}{v^2}.$$

$$3. z = \frac{y}{r^2}.$$

4.
$$z = \frac{y^2}{x}$$
.

The characteristics of the partial differential equation 84.

$$36\frac{\partial^2 z}{\partial x^2} - y^{14}\frac{\partial^2 z}{\partial y^2} - 7y^{13}\frac{\partial z}{\partial y} = 0$$
, are given by

1.
$$x + \frac{1}{y^6} = c_1, x - \frac{1}{y^6} = c_2.$$

2.
$$x + \frac{36}{y^6} = c_1, \ x - \frac{36}{y^6} = c_2$$

3.
$$6x + \frac{7}{y^6} = c_1, 6x - \frac{7}{y^6} = q_1^6$$

1.
$$x + \frac{1}{y^6} = c_1$$
, $x - \frac{1}{y^6} = c_2$.
2. $x + \frac{36}{y^6} = c_1$, $x - \frac{36}{y^6} = c_2$.
3. $6x + \frac{7}{y^6} = c_1$, $6x - \frac{7}{y^6} = c_2$.
4. $6x + \frac{7}{y^8} = c_1$, $6x - \frac{7}{y^6} = c_2$.

The Lagrange interpolation polynomial through (1, 10), (2, -2), (3, 8), is 85.

1.
$$11x^2 + 49x + 38$$

2.
$$\sqrt{3x^2-45x+36}$$

3.
$$11x^2 - 45x + 30$$

4.
$$11x^2 - 45x + 44$$

$$1. x_{n+1} = \frac{x_n}{2} + \frac{\alpha}{x_n}.$$

2.
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

3.
$$x_{n+1} = \frac{1}{\sqrt{2}} \left(x_n - \frac{a}{x_n} \right)$$
.

4.
$$x_{n+1} = \frac{1}{\sqrt{2}} \left(x_n + \frac{a}{x_n} \right).$$

87. The extremal problem

$$J[y(x)] = \int_{0}^{x} \{(y')^{2} - y^{2}\} dx$$

y(0) = 1, y(\pi) = \lambda, has

- a unique extremal if $\lambda = 1$.
- infinitely many extremals if
- a unique extremal if $\lambda = -1$
- infinitely many extremal if

88. The functional

$$J[y] = \int_{0}^{1} e^{x} (y^{2} + \frac{1}{2}y^{2}) dx, \quad y(0) = 1, \quad y(1) = e^{x}$$

attains

- yeak, but not a strong minimum on e^x.
- Strong minimum on ex.
- A weak, but not a strong maximum on ex.
- A strong maximum on ex.
- 89. A solution of the integral equation

$$\int_{0}^{x} e^{x-t} \, \phi(t) dt = \sinh x, \text{ is}$$

$$1. \qquad \phi(x) = e^{-x}.$$

$$\phi(x) = e^x.$$

3.
$$\phi(x) = \sinh x$$
.

4.
$$\phi(x) = \cosh x$$
.

90. If $\overline{\varphi}(p)$ denotes the Laplace transform of $\varphi(x)$ then for the integral equation of convolution type

$$\varphi(x) = 1 + 2 \int_{0}^{x} \cos(x - t) \varphi(t) dt,$$

 $\overline{\varphi}(p)$ is given by

1.
$$\frac{p^2 + 1}{(p-1)^2}$$
.

$$2. \qquad \frac{p^2 + 1}{(p+1)^2}.$$

$$3. \qquad \frac{\left(p^2+1\right)}{p(p-1)^2}.$$

$$4. \qquad \frac{p^2+1}{p(p+1)^2}$$

The Lagrangian of a dynamical system is $L_1 + k_1 q_1^2$, then the Hamiltonian is given by 91.

1.
$$H = p_1^2 + p_2^2 - kq_1^2$$
.

2.
$$H = \frac{1}{4} (p_1^2 + p_2^2) + kq_1^2$$
3.
$$H = p_1^2 + p_2^2 + kq_1^2$$
4.
$$H = \frac{1}{4} (p_1^2 + p_2^2) + kq_1^2$$

3.
$$H = p_1^2 + p_2^2 + kq_1^2$$

4.
$$H = \frac{1}{4} \left(p_1^2 + p_2^2 \right) + kq_1^2.$$

The kinetic energy T and potential energy V of a dynamical system are given 92. respectively, under usual notations, by

$$T = \frac{1}{2} \left[(3 + 3 \sin^2 \theta) + B (3 \cos \theta + 8)^2 \right]$$

and V = Mgl cos0. The generalized momentum p_{ϕ} is

1.
$$p_{\phi} = 2B \partial \theta \cos \theta + 2\partial \theta$$
.

2.
$$p_{\phi} = \frac{B}{2} \left(\varphi \cos \theta + \varphi^2 \right)^2.$$

3.
$$p_{\phi} = B(\psi \otimes \cos \theta + \partial \theta)^{2}.$$

4.
$$p_{\phi} = B(\varphi \cos \theta + \hat{\phi})$$
.

93. Consider repeated tosses of a coin with probability p for head in any toss. Let NB(k,p) be the random variable denoting the number of tails before the kth head. Then P(NB(10,p) = j 3th head occurred in 15th toss) is equal to

1. P(NB(7, p) = j - 15), for j = 15, 16, L

- 2. P(NB (7, p) = j - 12), for $j = 12, 13, \bot$
- P(NB (10, p) = j 15), for j = 15, 16, L3.
- P(NB (10, p) = j 12), for $j = 12, 13, \bot$ 4.
- 94. Suppose X and Y are standard normal random variables. Then which of the following statements is correct?
 - (X, Y) has a bivariate normal distribution. 1.
 - 2. Cov(X, Y) = 0.
 - The given information does not determine the joint at the betion of X and 3.
 - 4. X + Y is normal.
- Let F be the distribution function of a strictly positive andom variable with finite 95. expectation μ . Define

$$G(x) = \begin{cases} \frac{1}{\mu} \int_{0}^{x} (1 - F(y)) dy, & \text{if } x > 0 \\ 0, & \text{otherwise } q \end{cases}$$

Which of the following statements is correct?

- G is a decreasing function. 1.
- G is a probability donsity function.
- G (x) \rightarrow + so as $x \rightarrow$ + so. G is a distribution function. 3.
- 4.
- an irreducible Markov chain on the state space {1, 2, L }. Then Let X_1 , X_2 , X_3 an irreducible Markov chapter $P(X_n = 5 \text{ for infinitely many } n)$ can equal 96.
 - Only 0 or 1. 1.
 - 2. Only 0.
 - 3. Any number in [0, 1].
 - 4. Only 1.

97.
$$X_1, X_2, L$$
, X_n is a random sample from a normal population with mean zero and variance σ^2 . Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Then the distribution of $T = \sum_{i=1}^{n-1} (X_i - \overline{X})$ is

1.
$$t_{n-1}$$

2.
$$N(0, (n-1) \sigma^2)$$

3.
$$N(0, \frac{n+1}{n}\sigma^2)$$

$$4. \qquad N(0, \frac{n-1}{n}\sigma^2)$$

98. Let X1, X2, L ,Xn be independent exponential random variables with parameters nas Co λ_1, L , λ_n respectively. Let $Y = \min(X_1, L, X_n)$. Then Y has $\lambda_n \in \mathbb{A}_p$ on ential distribution with parameter

1.
$$\sum_{i=1}^{n} \lambda_{i}$$

2.
$$\prod_{i=1}^{n} \lambda_{i}$$

3.
$$\min\{\lambda_1, K, \lambda_2\}$$

3.
$$\min\{\lambda_1, K, \lambda_n\}$$

4. $\max\{\lambda_1, K, \lambda_n\}$

Suppose x1, x2L ,xn are n obs Tyan on a variable X. Then the value of A 99. which minimizes $\sum_{i=1}^{n} (x_i - A)^{n}$

4.
$$\frac{\operatorname{rain}_{k} L_{k} x_{k} + \operatorname{max}_{k} (x_{1}, L_{k}, x_{k})}{2}$$

Suppose X_1, X_2, L , X_n are i.i.d. with density function $f(x) = \frac{\theta}{r^2}$, $\theta < x$, $\theta > 0$. 100.

Then

1.
$$\sum_{i=1}^{n} \frac{1}{X_i^2}$$
 is sufficient for θ

2.
$$\min_{1 \le i \le n} X_i$$
 is sufficient for θ .

3.
$$\prod_{i=1}^{n} \frac{1}{X_i^2}$$
 is sufficient for θ

4.
$$\left(\max_{1 \le i \le n} X_i, \min_{1 \le i \le n} X_i\right)$$
 is not sufficient for θ .

- 101. Suppose X is a random variable with density function f(x). To test $H_0: f(x) = 1$, $0 \le x \le 1$, vs. $H_1: f(x) = 2x$, $0 \le x \le 1$, the UMP test at level $\alpha = 0.05$
 - Does not exist
 - 2. Rejects Ho if X > 0.95
 - Rejects H₀ if X > 0.05
 - Rejects H₀ for X < C₁ or X > C₂ where C₁, C₂ have to be determined.
- 102. Suppose the distribution of X is known to be one of the following:

$$f_1(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, -\infty < x < \infty;$$

$$f_2(x) = \frac{1}{2}e^{-|x|}, -\infty < x < \infty;$$

$$f_3(x) = \frac{1}{4}, -2 < x < 2.$$

If X = 0 is observed, then the maximum like it will estimate of the distribution of X is

- 1. $f_1(x)$
- 2. $f_2(x)$
- 3. $f_3(x)$
- 4 Does not evist
- 103. Suppose X_i , i=1,2,L \forall n, are independently and identically distributed random variables with continuous and the hypothesis to be tested is p^{th} ($0 \le p \le \frac{1}{2}$) quantile is ξ_0 . An appropriate test is
 - 1. Sign Test
 - 2. Mann-Whitney Wilcoxon rank sum test
 - Wilcoxon Signed rank test
 - Kolmogorov Smirnov test

Suppose Y ~ N (θ, σ^2) and suppose the prior distribution on θ is $N(\mu, \tau^2)$. The 104. posterior distribution of θ is also $N\left(\frac{\tau^2}{\tau^2 + \sigma^2}y + \frac{\sigma^2}{\tau^2 + \sigma^2}\mu, \frac{\sigma^2\tau^2}{\tau^2 + \sigma^2}\right)$

The Bayes' estimator of θ under squared error loss is given by

$$1. \qquad \frac{\tau^2}{\tau^2 + \sigma^2} \mathcal{Y}$$

$$2. \qquad \frac{\tau^2 y}{\tau^2 + \sigma^2}$$

3.
$$\frac{\tau^2}{\tau^2 + \sigma^2} y + \frac{\sigma^2}{\tau^2 + \sigma^2} \mu$$

- 4.
- Consider the model 105. $y_{ij} = \mu + \theta(i-1) + \beta(2-j) + s_{ij}, i = 1, 2; j = 1, 2,$

where y_{ij} is the observation under ith treatment and jth block, μ is the general effect, θ and β are treatment and block param dersarespectively and εij are random errors with mean 0 and common variance . Then

- μ , θ and β are all estimable θ and β are estimable, μ is soft stimable μ and θ are estimable, β is α estimable
- μ and β are estimable θ (s not estimable
- Consider a multiple line a negression model $\underline{y} = X \underline{\beta} + \underline{\varepsilon}$ 106. where \underline{y} is a n \times 1 we ctor of response variables, X is a n \times p regression matrix, $\underline{\beta}$ is a p × 1 vector of unknown parameters and $\underline{\varepsilon}$ is a n × 1 vector of uncorrelated for dom variables with mean 0 and common variance σ^2 . Let \hat{y} be the vector of least squares fitted values of \underline{y} and $\underline{e} = (e_1 L e_n)^T$ be the vector of residuals Then

1.
$$\sum_{i=1}^{n} e_i = 0 \text{ al ways}$$

- 2. $\sum_{i=0}^{n} e_{i} = 0 \text{ if one column of X is } (1, \bot, 1)^{T}$
- $\sum_{i=1}^{n} e_{i} = 0 \text{ only if one column of X is } (1 \bot , 1)^{T}$
- 4. nothing can be said about $\sum_{i=1}^{n} e_i$

107. Suppose
$$X_{p} \sim N_p \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 where

$$\Sigma = \begin{pmatrix} 1 & -1/2 & 0 & L & 0 \\ -1/2 & 1 & 0 & L & 0 \\ 0 & 0 & & & \\ M & M & \Sigma_{22} & \\ 0 & 0 & & & \end{pmatrix}$$

and Σ_{22} is positive definite. Then

 $P(X_1 - X_2 < 0, X_1 + X_2 \neq 0 \mid X_P > 0)$ is equal to

- 1. 1/8
- 2. 1/4
- 3. 1/2
- 4. 1
- 108. Suppose the variance-covariance matrix of a random yector $X_{(3 \times 1)}$ is

$$\sum = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 8 & 2 \\ 0 & 2 & 8 \end{pmatrix}.$$

The percentage of variation explaine 18 the first principal component is

- 1. 50
- 2. 45
- 3. 60
- 4. 40
- 109. A population consists of 10 students. The marks obtained by one student is 10 less than the war age of the marks obtained by the remaining 9 students. Then the variance of the population of marks (σ^2) will always satisfy
 - 1. \(\biggriag{\text{\tinit}\\ \text{\ti}}}\\ \text{\text{\text{\texi}}\\ \text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\tex{\texi}\text{\text{\text{\texi}\text{\texi}\text{\texit{\text{\ti
 - 2. $\sigma^2 = 10$
 - σ² ≤10
 - 4. $\sigma^2 \ge 9$

110. For what value of λ , the following will be the incidence matrix of a BIBD?

$$N = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & \lambda \\ 0 & 1 & 1 \end{pmatrix}$$

- 1. $\lambda = 0$
- 2. $\lambda = 1$
- 3. $\lambda = 4$
- 4. $\lambda = 3$
- 111. With reference to a 2² factorial experiment, consider the factorial effects A, B and AB. Then the estimates of
 - 1. Only A and B are orthogonal
 - 2. Only A and C are orthogonal
 - 3. Only B and C are orthogonal
 - 4. A, B and C are orthogonal
- 112. Let X be a r.v. denoting failure time of a component. Failure rate of the component is constant if and order in a d.f. of X is
 - 1. exponential
 - 2. negative binom/al
 - weibull
 - normal
- 113. Consider the problem

max
$$-2x_2$$

subject $x_1 - x_2 \le 1$
 $3x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$

This problem has

- unbounded solution space but unique optimal solution with finite optimum objective value
- 2. unbounded solution space as well as unbounded objective value
- 3. no feasible solution
- 4. unbounded solution space but infinite optimal solutions with finite optimum objective value

- 114. Consider an M/M/1/K queuing system in which at most K customers are allowed in the system with parameters λ and μ , respectively ($\rho = \lambda/\mu$). The expected steady state number of customers in the queueing system is K/2 for
 - 1. $\rho=1$
 - 2. \rho <1
 - 3. \rho > 1
 - 4. any *p*
- 115. Consider the system of equations $P_1x_1 + P_2x_2 + P_3x_3 + P_4x_4 = b$, where

$$P_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, P_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, P_3 = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}, P_4 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}.$$

The following vector combination does not form a basis:

- 1. (P_1, P_2, P_3)
- 2. (P₁, P₂, P₄)
- 3. (P₂, P₃, P₄)
- 4. (P₁, P₃, P₄).