Code: A-01/C-01/T-01 JUNE 2006 Subject: MATHEMATICS-I Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following: (2x10)

a. The value of limit
$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+y^2}$$
 is

- **(A)** 0 **(B)** 1
- (C) 2 (D) does not exist

b. If
$$u = \frac{y^3 - x^3}{y^2 + x^2}$$
, then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ equals

(A) 0

(B) u

(C) 2u

(D) 3u

c. Let
$$f(x,y) = x \sin y + e^x \cos y, x = t^2 + 1, y = t^2$$
. Then the value of $\left(\frac{\partial f}{\partial t}\right)_{t=0}$ is

(A) e + 1

(B) 0

(C) e − 1

(D) $e^2 + 1$

$$\int_{1}^{1} \int_{1}^{1} \int_{1}^{1} \left(x^2 + y^2 + z^2\right) dz dy dx$$

d. The value of 0 0 0

is

(A) 1

(B) 1/3

(C) 2/3

(D) 3

e. The solution of
$$(D^2 + 2D + 2)y = 0$$
, $y(0) = 0$, $y'(0) = 1$ is

- (A) $e^{x} \sin x$
- (**B**) e^{-x} cos x
- (C) $e^{-x} \sin x$

(D) e^x cos x

f. The solution of
$$y' + y \tan x = \cos x$$
, $y(0) = 0$ is

$$(A) \sin x$$

(B) cos x

(D) x cos x

g. Let
$$v_1 = (1,1,0,1)$$
, $v_2 = (1,1,1,1)$, $v_3 = (4,4,1,1)$ and $v_4 = (1,0,0,1)$ be elements of \mathbb{R}^4 . The set of vectors $\{v_1, v_2, v_3, v_4\}$ is

- (A) linearly independent
- **(B)** linearly dependent

(C) null

(**D**) none of these

h. The eigenvalues of the matrix
$$\begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$
 are

- - (A) -1,2 and 1 (C) -1, -2 and 4

(B) 0, 1 and 2

- **(D)** 1, 1 and -1
- i. Let P_0 , P_1 , P_2 be the Legendre polynomials of order 0, 1, and 2, respectively. Which of the following statement is correct?

(A)
$$P_{2}(x) = 3xP_{1}(x) + \frac{1}{2}P_{0}(x)$$
 (B) $P_{2}(x) = \frac{3}{2}xP_{1}(x) + \frac{1}{2}P_{0}(x)$ (C) $P_{2}(x) = \frac{3}{2}xP_{1}(x) + \frac{1}{2}P_{0}(x)$ (D) $P_{2}(x) = \frac{1}{2}xP_{1}(x) + \frac{3}{2}P_{0}(x)$

$$P_2(x) = \frac{3}{2} x P_1(x) + \frac{1}{2} P_0(x)$$

$$P_2(x) = \frac{3}{2} x P_1(x) + P_0(x)$$

$$P_{2}(x) = \frac{1}{2} x P_{1}(x) + \frac{3}{2} P_{0}(x)$$

j. Let
$$^{J}n$$
 be the Bessel function of order n. Then $\int \frac{1}{x} J_2(x) dx$ is equal to

(A)
$$\mathbb{Z}J_1(\mathbb{Z}) + \mathbb{C}$$

$$\mathbf{(B)} \quad \frac{1}{x} \mathbf{J}_{1}(\mathbf{x}) + \mathbf{C}$$

$$(\mathbf{C})$$
 - $\mathbb{X} \mathbf{J}_1(\mathbb{X}) + \mathbb{C}$

(B)
$$\frac{1}{x}J_{1}(x)+C$$
(D)
$$-\frac{1}{x}J_{1}(x)+C$$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Consider the function f(x, y) defined by

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

$$\text{if } (x,y) = (0,$$

Find $f_x(0,0)$ and $f_y(0,0)$.

Is
$$f(x, y)$$
 differentiable at $(0, 0)$? Justify your answer.

b. Find the extreme values of
$$f(x,y,z) = x^2 + 2xy + z^2$$
 subject to the constraints $g(x,y,z) = 2x + y = 0$ and $h(x,y,z) = x + y + z = 1$. (8)

(8)

- Q.3 a. Find all critical points of $f(x,y) = (x^2 + y^2)e^{4x + 2x^2}$ and determine relative extrema at these critical points.

 (8)
 - b. Find the second order Taylor expansion of $f(x,y) = \sin[(x^2 + 1)y]$ about the point $(0,\pi/2)$.
 - c. Change the order of integration in the following double integral and evaluate it : $\int\limits_{-\infty}^{1}\int\limits_{-\infty}^{1}x^2e^{xy}\,dxdy$

(4)

Q.4 a. Solve the differential equation
$$\frac{dy}{dx} + y = xy^3$$
. (4)

b. Solve the differential equation
$$\frac{y^{3/2}+1}{x^{1/2}}dx + \left(3x^{1/2}y^{1/2}-1\right)dy = 0$$
. (6)

c. Find the general solution of the differential equation $x^2y'' + xy' + 4y = 2x \ln x$.

(6)

Q.5 a. Find the general solution of the differential equation
$$16y'' + 8y' + y = 48x e^{-x/4}.$$
 (8)

- b. Find the linear Taylor series polynomial approximation to the function $f(x,y) = 2x^3 + 3y^3 4x^2y$ about the point (1, 2). Obtain the maximum absolute error for the polynomial approximation in the region |y-2| < 0.1.
- **Q.6** a. Find the general solution of the differential equation $x^{3}y''' x^{2}y'' + 2xy' 2y = x^{3}$

b. Show that the eigenvalues of a Hermitian matrix are real.

- **Q.7** a. Using Frobenius method, find two linearly independent solutions of the differential equation 2x(1+x)y'' + (1+x)y' - 3y = 0.
 - b. Solve the following system of equations by matrix method:

$$5x + 3y + 14z = 4$$
$$y + 2z = 1$$

$$2x + y + 6z = 2$$

$$x + y + 2z = 0$$

(6)

- Express the polynomial $7x^4 + 6x^3 + 3x^2 + x 6$ in terms of Legendre **Q.8** polynomials.
 - b. Let $^{J_{\alpha}}$ be the Bessel function of α. order Show $\sqrt{\frac{\pi x}{2}} \qquad J_{3/2}(x) = \frac{\sin x}{x} - \cos x$ **(8)**
- a. If A is a diagonalizable matrix and f (x) is a polynomial, then show that **Q.9** f(A)is also diagonalizable. **(7)**

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 0 \end{pmatrix}$$

 $A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 2 & 3 \end{pmatrix}.$ Find the matrix P so that $P^{-1}AP$ is a diagonal matrix. (9)