

B.Tech. Degree V Semester (Supplementary) Examination in Electronics and communication Engineering June 2002

EC 503 MICRO ELECTRONICS AND INTEGRATED CIRCUITS

(1998 Admissions)

Maximum Marks: 100

		MODULE - I	•
I.	(a) (b)	Explain Ion implantation process with the help of a diagram. What are the advantages of ion implantation and how it is utilized in VLSI technology.	(12) (8)
II.	(a) (b) (c)	OR Discuss the advantages of ICs over discrete devices. List the steps involved in the fabrication of a monolithic IC. Compare thin film and thick film technology.	(6) (10) (4)
		MODULE - II	
III.	(a) (b)	With the help of neat sketches explain the fabrication steps for a PMOS transistor. How isolation is achieved between transistors in MOS technology? OR	(12) (8)
IV.	(a) (b)	Explain p-well process of CMOS fabrication with the help of neat sketches. Mention the advantages of CMOS technology.	(14) (6)
		MODULE - III	
V.	(a)	What are the importance of constant voltage sources and constant current sources in IC fabrication?	(8)
	(b)	Explain the working of a current source and discuss its fabrication. OR	(12)
VI.	(a) (b)	Write short notes on precision current source. Draw the circuit of a level translator. Mention the application of dc level translators.	(8) (12)
		MODULE - IV	
VII.	(a)	Explain the processing steps involved in the fabrication of capacitors and resistors in thick film technology.	(12)
	(b)	Explain the structure and operation of a phase modulator. OR	(8)
VIII.	(a) (b) (c)	Discuss the structure and characteristics of coupled waveguide. Distinguish between thin film and thick film devices. Explain the working of an optical switch.	(8) (6) (6)
		MODULE - V	
IX.	(a) (b)	Describe the basic operation of a CCD with the help of diagrams. Explain how one bit can be read/written in an SRAM cell. OR	(8) (12)
X.	(a) (b)	Give a comparison between conventional ICs and ASICs. Write short notes on FPLA.	(8) (5)
	(c)	Explain the operation of I ² L inverter.	(7)