Entrance Examination, 2006

M.Sc. (Mathematics/Applied Mathematics)

Hall Ticket No.

Answer Part A by circling the correct letter in the array below:

Time: 2 hours	Max. Marks: 100
	Part A: 25
	Part B: 75
•	

Instructions

- 1. Calculators are not allowed.
- Part A carries 25 marks. Each correct answer carries 1 mark and each wrong answer carries 1/4 mark.
 So do not gamble. If you want to change any answer, cross out the old one and circle the new one. Over written answers will be ignored.
 - 3. Part B carries 75 marks. There are 15 questions in Part B and each question carries 5 marks. The answers should be written in the space provided below each question.
 - Do not detach any pages from this answer book. It contains 16 pages.
 Pages 15 and 16 are for rough work.

_	,,,,							***	<u> </u>		-
	1	a	b		С		d		6	}	
	2	a	j	Э.	С		•	d		,	
	3	a]	b	С		_ '	d	е		
	4	a		b		С		d	е		
	5	a	_ 1	b		c	L	d	Ľ	е	
	6	a	T	b		С		d		е	
	7	a		b	Ī	С		d		e	
	8	a		b		С		d		e	
Γ	9	a		b	Ī	С	Ţ	d	T	е]
	10	a		b		С		d		е	
ſ	11	a		b		С		d	d		
	12	a		b		С		d		е	
	13	a		b		С		d		е	
	14	a	,	b		С		d		е	
	15	а	,	b		с		d		е	
	16 a		L	b		С		d		е	
	17	а	L	Ъ		С		d		e	
	18	а	ı	b	1	С		d		е	
	19	a	ı t			С		d		е	
	20) a	ì	b	b		С		d		_
	21	.] 8	ı	b		C	С		d		
	22 a		1	b		(С		d		;
	23		a !)		3	c	d		;
	24		a) .		c	C	d		;
	2	5	a 1		5		С		ł	e	;

Part A

1.	Let A and B be two sets having m and n elements respectively. If the
	number of elements in $A \cap B$ is 10, then the number of elements in
	$(A \setminus B) \cup (B \setminus A)$ is

a) m + n - 20 b) m + n - 10 c) 10 d) m + n e) 0.

- 2. If $A = \{E \subset \mathbb{N} \mid E \text{ is disjoint from the set of all multiples of } 3\}$, where \mathbb{N} is the set of all positive integers, then which of the following is always true:
 - a) $\{6\} \in \mathcal{A}$ b) $6 \in E$, whenever E does not belong to \mathcal{A} .
 - c) $6 \in \mathcal{A}$ d) If $6 \in E$, then E does not belong to \mathcal{A} .
 - e) none of the above.
- 3. Let (a_n) be a sequence of real numbers. Let $b_n = a_n + a_{n+1}$, for $n = 1, 2, \cdots$. Which of the following is always true:
 - a) If (b_n) converges, then (a_n) converges.
 - b) If (a_n) converges, then (b_n) diverges.
 - c) If (a_n) converges, then (b_n) converges.
 - d) (a_n) is a subsequence of (b_n) .
 - e) none of the above.
- 4. Consider the series $\sum \frac{1}{\sqrt{n}}$ and $\sum \frac{1}{n^{\frac{3}{2}}}$. Then
 - a) both the series converge to the same value.
 - b) both the series converge to different values.
 - c) both the series are divergent.
 - d) first series is divergent and second series is convergent.
 - e) first series is convergent and second series is divergent.
- 5. $\lim_{x\to 2\pi} \frac{\sin x}{x-2\pi}$ is equal to
 - a) 0 b) 1 c) ∞ d) -1 e) none of these.

- 6. Let $f(x) = |x|^3$.
 - a) f is continuous at x = 0 but not differentiable at x = 0.
 - b) f is differentiable at x = 0, but f'(x) is not continuous at x = 0.
 - c) f is differentiable at x = 0 and f'(x) is continuous at x = 0.
 - d) f''(x) exists at x = 0, but f''(x) is not continuous at x = 0.
 - e) none of the above.
- 7. Which of the following inequalities is always true for x > 1:

 - a) $\frac{x-1}{x} > \log x$ b) $\frac{x-1}{x} < \log x < x 1$
 - c) $\log x > x 1$
- $d)^{\frac{x-1}{x}} > x-1$
- e) none of the above.
- 8. If $f(x) = [x^2] [x]^2$, where [x] denotes the greatest integer $\leq x$, then $\int_{x}^{2} f(x) dx$ is
 - a) $4 \sqrt{3} + \sqrt{2}$ b) $4 \sqrt{3} \sqrt{2}$
 - c) $4 + \sqrt{3} + \sqrt{2}$ d) 0
 - e) none of the above.
- 9. The slope of the tangent to the unit circle $x^2 + y^2 = 1$ at $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ is

- a) $-\sqrt{3}$ b) $\sqrt{3}$ c) $\frac{1}{\sqrt{3}}$ d) $-\frac{1}{\sqrt{3}}$ e) none of these.
- 10. The angle between the line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ and the plane 2x + y - 2z - 3 = 0 is
 - b) $\frac{\pi}{2}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{3}$ e) none of these.
- 11. Let $\mathbf{Z}_{29}^* = \{1, 2, 3, \dots, 28\}$ be the group under multiplication modulo 29. The inverse of 28 in \mathbf{Z}_{29}^* is
- b) 27
 - c) 26 d) 1
- e) none of these.
- 12. The value of $5^{5!}$ (modulo 11) is
 - a) 2 b) 3 c) 4 d) 5
- e) none of these.

- 13. Consider the following statements:
 - S1) Every group of prime order must be cyclic.
 - S2) Every group of prime order must be abelian.
 - S3) Every group of prime order has only one subgroup other than itself.

Which of the following is always true?

- a) S1 and S2 are true but S3 is false.
- b) S2 and S3 are true but S1 is false.
- c) S1 and S3 are true but S2 is false.
- d) S1, S2 and S3 are true.
- e) none of the above.

14. Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
. For the linear transformation $T: \mathbf{R}^3 \to \mathbf{R}^3$ given by $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ which of the following is true?

- a) The nullity is 1 and the rank is 2.
- b) The nullity is 2 and the rank is 1.
- c) The nullity is 0 and the rank is 3.
- d) The nullity is 3 and the rank is 0.
- e) none of the above.

15. The eigen values of the matrix
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
 are

- a) 1, 2, 3 b) 3, 5, 6 c) 4, 5, 6 d) 0, 1 e) none of these.
- 16. Let A be a 3×3 matrix with real entries. If A commutes with all 3×3 matrices with real entries, then the number of distinct real eigen values of A is
 - a) 0 b) 1 c) 2 d) 3 e) none of these.

- 17. Let a and b be the zeroes of the quadratic polynomial $x^2 + \sqrt{\pi}x + \frac{22}{28}$. Then
 - a) a and b are distinct real numbers.
 - b) a and b are real and equal.
 - c) a and b are distinct and complex conjugate.
 - d) a = b and a is not a real number.
 - e) none of the above.
- 18. Let $A = \begin{pmatrix} 2 & 4 & 6 \\ 4 & 8 & 12 \\ 6 & 12 & 18 \end{pmatrix}$ and $b = \begin{pmatrix} 12 \\ 24 \\ a \end{pmatrix}$. The system of equations AX = b has a solution if a is equal to
 - c) 28 a) 12 b) 24 d) 82 e) none of these.
- 19. A non-empty set in the plane (\mathbb{R}^2) is said to be convex if the line segment joining any two points in the set is completely contained in the set. Consider the following sets.
 - I) the intersection of two circular discs of radius 2 having centers (0,0) and (3,0).
 - II) the set of all (x, y) with $x \ge 0$ and $y \ge 0$.

Then

- a) both I and II are convex. b) both I and II are not convex.
- c) I is convex but II is not. d) II is convex but I is not.
- e) none of the above.
- 20. Let

$$f(x) = \begin{cases} e^x + a \sin x & \text{if } x < 0 \\ b(x-1)^2 + x - 2 & \text{if } x \ge 0 \end{cases}$$

The function f is differentiable at x = 0 if

- a) a = 6 and b = 3. b) a = -6 and b = 3.
- c) a = -6 and b = -3. d) a = 6 and b = -3.
- e) none of the above.

- 21. Consider the element $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$ of the symmetric group S_5 on five elements. Then
 - a) the order of α is 2.
- b) the order of α is 3.
- c) the order of α is 6.
- d) the order of α is 5.
- e) none of the above.
- 22. If the statement "All elements of A are in B" is false, then
 - a) no element of A is in B.
 - b) all elements of B are in A.
 - c) some element of A is not in B.
 - d) some element of B is not in A.
 - e) none of the above.
- 23. The value of the integral $\int_{-1}^{0} \sqrt{\frac{1+x}{1-x}} dx$ is
 - a) 0 b) ∞ c) $\frac{\pi}{2} 1$ d) $\frac{\pi}{2} + 1$ e) none of these.
- 24. A fair coin is being tossed. The probability that after 4 trails, more heads than tails have appeared is
 - a) $\frac{1}{8}$ b) $\frac{3}{16}$ c) $\frac{4}{16}$ d) $\frac{5}{16}$ e) none of these.
- 25. 5 boys and 5 girls are made to sit in a row. Then the probability that all the 5 girls sit together is
 - a) twice the probability that no two girls sit next to each other.
 - b) half the probability that no two girls sit next to each other.
 - c) 3 times the probability that no two girls sit next to each other.
 - d) equal to the probability that no two girls sit next to each other.
 - e) none of the above.

Part-B

1. Let $v_1 = (1, 0, -1, 2)$, $v_2 = (0, 0, 3, 0)$, $v_3 = (1, 1, 0, -1)$ in \mathbb{R}^4 . Give an example of a vector which does not belong to the linear span of v_1 , v_2 and v_3 . Show why your example works.

2. Find the dimension of the subspace $\{(x_1, x_2, x_3, x_4, x_5)/3x_1 - x_2 + x_3 = 0, x_2 - x_3 = 0, x_1 = 0\}$ of \mathbb{R}^5 .

3. Let \mathbb{R}^* be the group of all nonzero real numbers under multiplication and \mathbb{R}^{*^2} the subset of \mathbb{R}^* consisting of all squares. Show that \mathbb{R}^{*^2} is a subgroup of \mathbb{R}^* and find the order of the quotient group $\mathbb{R}^*/\mathbb{R}^{*^2}$

4. If m is an odd integer then show that $m^2 - 1$ is divisible by 8.

5. Give an example of a 2×2 matrix A which is not equal to the identity matrix I and $A^3 = I$.

6. Find the eigenvalues of the matrix $\begin{bmatrix} 3 & 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2 \end{bmatrix}$

7. Find the maximum and minimum of the function $f(x) = x^3 - 27x$ in the interval [-4, 7].

8. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. If f is not one-one then show that f'(c) = 0 for some point $c \in \mathbb{R}$. Give an example of differentiable function $g: \mathbb{R} \to \mathbb{R}$ such that g'(c) = 0 for some point $c \in \mathbb{R}$ and g is one-one.

9. Let $f: [-1,2] \longrightarrow \mathbb{R}$ defined as $f(x) = \min(x,x^2)$. Find $\int_{-1}^2 f(x) dx$.

10. Evaluate $\int (x^2ydx + xy^2dy)$ from (0,0) to (2,4) along the straight line joining these two points and also along the curve $y = x^2$.

11. Find the equations of the lines of intersection of the plane x + 7y - 5z = 0 and the cone 3yz + 14xz - 30xy = 0.

12. Prove that $3y^2 - 8xy - 3y^2 - 29x + 3y - 18 = 0$ represents two straight lines. Find the point of intersection and the angle between them.

13. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} x^n \sqrt{\log(n)}.$

- 14. 3 fair die of different colours are thrown together. Evaluate
 - (a) The probability that more sixes show up than ones.
 - (b) An equal number of ones and threes show up.
 - (c) The expected number of sixes.

- 15. There are 10 slips numbered 1, 2, ..., 10 in a bag. Anita puts her hand in the bag and takes out two slips. Evaluate the probabilities of the following events
 - (a) One of the numbers drawn is 6.
 - (b) 6 is the larger of the two numbers drawn.
 - (c) The sum of the two numbers drawn is divisible by 3.
 - (d) The product of the two numbers drawn is a perfect square.