M.Sc. (Previous) Applied Chemistry Examination, August/September 2008 Directorate of Correspondence Course (Freshers) Paper – 1.01: ANALYTICAL AND SPECTROSCOPIC TECHNIQUES

Time: 3 Hours

Max. Marks: 85

Notes: 1) Answer any TEN questions from Part A, TWO questions from Part B and THREE questions from Part C.

- 2) Figures to the right indicate marks.
- 3) Repeaters answer any ONE question from Part B.

PART/_A

 $(2 \times 10 = 20)$

- 1. What are indeterminate errors?
- 2. What is a calibration graph? Give its significance in spectrophotometric analysis.
- 3. Show the possible modes of bonding of NO₃ in metal complexes.
- 4. What type of solvents used in ESR ?
- 5. Distinguish between accuracy and precision.
- 6. What is partition chromatography ? 2008
- What are the advantages of TCD ?
- 8. What is R_f value? Give its significance.
- 9. Explain the principle involved in NMR spectroscopy.
- State nitrogen rule.

- 11. What is a shift reagent? Give an example.
- 12. Give the characteristics of carrier gas employed in GC.
- 13. Distinguish between isocratic elution and gradient elution.
- 14. What are the characteristics of Flame in Flame photometer?
- 15. What are the special features of reference material used in DTA?

PART - B

- 16. a) What are the advantages of thin layer chromatography over other chromatographic methods?
 - b) Analysis of the iron content of a sample gave the following results (in ppm):

45.38, 44.56, 46.53, 43.92, 44.03 and 46.94-

Calculate the mean, median, standard deviation and variance.

(5+5=10)

- 17. a) Explain the factors influencing position and intensity of spectral lines.
 - b) Discuss the working principles of TGA.

(5+5=10)

- 18. a) Explain the factors that influence fluorescence intensity of molecules.
 - b) What are the basic principles of gas chromatography? Outline the working principle of electron capture detector. (5+5=10)

PART - C

- a) Describe the usefulness of infrared spectroscopy in the study of molecule with suitable examples.
 - b) Give a brief note on interaction of electromagnetic radiation with matter.
 - c) List out the factors that influence resolution in chromatography. (5+5+5=15)

- 20. a) What is ion-exchange capacity of a resin? Describe the application of ion-exchange technique in the separation of lanthanides.
 - b) Define the term "chemical shift". What is its significance? Explain the factors influencing the chemical shift.
 - c) What is Melafferty rearrangement? Give a brief note on the applications of mass spectroscopy. (5+5+5=15)
- 21. a) Give the block diagram of Flame photometry. Name the components and explain their functions.
 - b) Derive Beer Lambert's law and discuss the deviation.
 - c) Describe the sources of determinate errors. How it can be minimized?

(5+5+5=15)

- 22. a) With the help of a block diagram indicate the configuration modules used in HPLC. Highlight the applications of HPLC.
 - b) Give a brief account of applications of EPR spectroscopy in the study of inorganic and organic compounds.
 - c) Describe the factors that influence TG results.

(5+5+5=15)

- 23. a) Discuss in detail the utility of NMR spectroscopy in structure elucidation of organic compounds.
 - b) Give a brief note on differential scanning calorimetry.
 - c) Describe the applications of differential thermal analysis.

(5+5+5=15)